

MCCS

39899 Balentine Drive, Suite 125 Newark, CA 94560 Phone: 510-651-5122
Fax: 510-651-5127
URL: www.vesa.org

VESA Monitor Control Command Set Standard

Version 2.2a 13 January 2011

Purpose

The purpose of this revision is to incorporate VCP codes and the document format adopted in MCCS_v3.0 while maintaining full compatibility with MCCS_v2.1. This revision also defines compliance requirements for all MCCS VCP codes. These changes are intended to enhance performance in Direct Drive Monitors (DDM) displays.

Summary

This document describes a standardized list of commands and controls used in identifying and controlling displays by means of an application running on a connected host. This list of commands and controls, while kept to a minimum, supports the control of virtually all parameters related to the screen settings in the display. This standard does not describe how these commands are communicated using any particular video interface protocol.

Further, this document assumes the video interface connecting the display to a host can issue an unsolicited attention call (interrupt or HPD) to alert the host that something has happened outside the control of the host. The targeted display devices are displays attached to the video output of PCs, industrial display controllers or consumer electronic sources; however, not restricted to these areas.

Version 3 had several purposes, including the correction of known errors, clarification of the use of certain VCP codes, new definitions for some VCP codes and the introduction of new VCP codes. This revision incorporates those corrections, clarifications, and new definitions but redefined as required to maintain backward compatibility with MCCS_v2.1. This revision additionally withdraws the support for, and reserves from future use, VCP code C7_h (Display Enable Key) and VCP code 13_h (Backlight Control), which have not achieved their intended purpose. In addition, the compliance requirements added in_v3 are included for all of the defined VCP codes except for the DPVL support group.

Table of Contents

Preface	8
Acknowledgements	10
Revision History	11
1 Introduction	12
1.1 Acronyms	
1.2 Glossary	
1.3 References	
1.4 Terminology Conventions	14
1.4.1 Keywords	
1.4.2 VCP Code Type	
1.4.3 VCP Code Function	
1.4.4 VCP Code Compliance	
1.4.5 Use of 'Horizontal', 'Top' and 'Bottom'	
1.4.6 Data Byte Designations	
1.5 Overview of MCCS_v2.2	
1.5.1 Summary	
2 Co-existence of Local and Remote Adjustment Options	
2.1 Remote Adjustment Always Takes Priority	
2.2 Remote and Local Adjustment May be Active Simultaneously	
3 Functional Characteristics	
3.1 Operational Model	
3.2 Implementation of MCCS on Different Interfaces	19
4 Display VCP Codes	20
4.1 VCP Codes That Return More Than 2 Bytes	
4.2 Control Grouping	
4.2.1 Preset Operations (see Section 8.1)	20
4.2.2 Image Adjustment (see Section 8.2)	
4.2.3 Display Control (see Section 8.3)	
4.2.4 Geometry (see Section 8.4)	
4.2.5 Miscellaneous Functions (see Section 8.5)	
4.2.6 Audio Functions (see Section 8.6)	
4.2.7 DPVL Functions (see Section 0)	
4.2.8 Manufacturer Specific (see Section 8.8)	
4.3 Control Function	
4.3.1 Continuous Controls	
4.3.3 Table Controls	
4.3.4 Manufacturer-specific Controls.	
5 Required VCP Codes	
6 Capability String Format & Terminology	
6.1 Capability String Compliance	24
7 Functional Grouping of VCP Codes	25
7.1 Image Adjustments	
7.2 Color Adjustments	
7.3 Image Geometry Adjustment	
7.4 Audio Adjustments	
7.5 Window Operations	
7.6 DPVL Support	30
8 VCP Code Definitions	31

8.1 Preset Operations VCP Codes	
8.2 Image Adjustment VCP Codes	
8.3 Display Control VCP Codes	
8.3.1 Source Timing Mode	
8.3.2 OSD / Button Event Control	
8.4 Geometry VCP Codes	
8.5 Miscellaneous Functions VCP Codes	
8.6 Audio Function VCP Codes	
8.7 DPVL Support VCP Codes	
8.8 Manufacturer Specific VCP Codes	98
Ompliance	99
9.1 Overview	
9.2 Compliance of Manufacturer VCP Codes	99
9.3 Summary of Compliance	99
9.4 Compliance Testing – General Points	99
10 Compliance Procedures	101
10.1 Introduction	
10.2 Organization of Compliance Procedures	
10.3 Compliance Procedure for VCP Code 02 _h – New Control Value	
10.3.1 Buttonless Display – Verify Read and Write Operation of VCP Code 02 _h	
10.3.2 Display with Manual Controls – Verify Read and Write of VCP Code 02 _h	
10.4 Compliance Procedure for VCP Code DF _h – VCP Version	
10.5 Compliance Procedure for Capability String	
10.6 Compliance Procedure for Controls with a Continuous Range of Adjustment	
10.7 Compliance Procedure for Controls with a Non-Continuous Range of Adjustment	
10.8 Compliance Procedure for Preset VCP Codes	
10.9 Compliance Procedures for Auto Set-up and Auto Color Set-up VCP Codes	
10.10 Compliance for 6-axis Color Adjustments	
10.10.1 Compliance for 6-axis Saturation VCP Codes	
10.10.2 Compliance for 6-axis Hue VCP Codes	
10.11 Compliance for Read only VCP Codes	
10.11.1 Compliance Procedure for Horizontal and Vertical Frequency VCP Codes	
10.11.2 Compliance Procedure for Display Usage Time VCP Code	
10.11.3 Compliance Procedure for Miscellaneous Read Only VCP Codes	
10.11.4 Compliance for Write Only VCP Codes	
10.11.5 Compliance Procedure for Degauss VCP Code	
10.12 Compliance for Table VCP Codes	
10.12.1 Compliance Procedure for Input Source and Output Select VCP Codes	110
10.12.2 Compliance Procedure for Source Timing Mode VCP Codes	
10.12.3 Compliance Procedure for EDID Operation	
10.12.4 Compliance Procedure for Auxiliary Display Data VCP Code	
10.12.5 Compliance Procedure for Transmit Display Descriptor VCP Code	
10.12.6 Compliance Procedure for Asset Tag VCP Code	
10.12.7 Compliance Procedure for LUT Size VCP Code	
10.12.8 Compliance Procedure for Single Point LUT Operation VCP Code	
10.12.9 Compliance Procedure for Block LUT Operation VCP	
10.12.10 Compliance Procedure for Code Remote Procedure Call VCP Code	114
10.12.11 Compliance procedure for TV-channel Up/Down VCP Code	
10.12.12 Compliance Procedure for Auto Set-up On/Off VCP Code	
10.12.13 Compliance Procedure for Window Size, VCP Code	116
11 VCP Code Index	
Appendix A: Drawings of Display Geometry	124
Appendix B: Implementation Guidance	127
B.1 Support for Multiple Window Operation.	
B.1.1 Window Position VCP Codes $(95_h \rightarrow 98_h)$	

B.1.2	Window Mask Control VCP Code (A4 _h)	127
	Window Select VCP Code (A5 _h)	
	Picture in Picture (PIP)	
	eping Local and Remote Operations in Synchronization	
Appendix	C: Main Contributor History (Previous Versions)	130

Tables

Table 1-1: List of Acronyms	12
Table 1-2: Glossary of Terms	13
Table 1-3: Reference Documents	13
Table 1-4: Keyword Conventions	14
Table 3-1: Generalized Host Requests	19
Table 6-7: Capability String Abbreviations	23
Table 8-1: Preset Functions VCP Code Cross-reference	31
Table 8-2: Preset Operations VCP Codes	31
Table 8-3: Image Adjustment VCP Code Cross-reference	33
Table 8-4: Image Adjustment VCP Codes	34
Table 8-5: Display Control VCP Code Cross-reference	57
Table 8-6: Source Timing mode	58
Table 8-7: CEA DTV Timing Codes	62
Table 8-8: OSD / Button Event Control	64
Table 8-9: Display Control VCP Codes	67
Table 8-10: Geometry VCP Codes Cross-reference	71
Table 8-11: Geometry VCP Codes	72
Table 8-12: Miscellaneous Function VCP Code Cross-reference	76
Table 8-13: Miscellaneous Functions VCP Codes	76
Table 8-14: Audio Function VCP Code Cross-reference	90
Table 8-15: Audio Function VCP Codes	90
Table 8-16: DPVL Support Cross-reference	96
Table 8-17: DPVL Support VCP Codes	
Table 8-18: Manufacturer Specific VCP Codes	98
Table 10-1: Compliance Procedures Purpose and Scope	101
Table 10-2: Compliance Procedure (buttonless) for VCP Code 02 _h	102
Table 10-3: Compliance Procedure for VCP Code 02 _h	103
Table 10-4: Compliance Procedure for VCP Code DF _h	103
Table 10-5: Compliance Procedure for Capability String	103
Table 10-6: Compliance Procedure for Continuous Range VCP Codes	104
Table 10-7: Compliance Procedure for Non-Continuous Range VCP Codes	105
Table 10-8: Compliance Procedure for displays that support VCP 00 _h	106
Table 10-9: Compliance Procedure for Preset VCP Codes	106
Table 10-10: Compliance Procedure for Auto Set-up VCP Codes	107
Table 10-11: Compliance Procedure for 6-axis Color Saturation Adjustment VCP Codes	108
Table 10-12: Compliance Procedure for 6-axis Color Hue VCP Codes	108
Table 10-13: Compliance Procedure for Horizontal and Vertical Frequency VCP Codes	109
Table 10-14: Compliance Procedure for Display Usage Time VCP Code	109
Table 10-15: Compliance Procedure for Other Read only VCP Codes	109
Table 10-16: Compliance Procedure for Write Only VCP Codes	110
Table 10-17: Compliance Procedure for Degauss VCP Codes	110
Table 10-18: Compliance Procedure for Input Source and Output Select VCP Codes	110
Table 10-19: Compliance Procedure for Source Timing Mode VCP Code	111
Table 10-20: Compliance Procedure for EDID Operation VCP Code	
Table 10-21: Compliance Procedure for Auxiliary Display Data VCP Code	
Table 10-22: Compliance Procedure for Transmit Display Descriptor VCP Code	112
Table 10-23: Compliance Procedure for Asset Tag VCP Code	
Table 10-24: Compliance Procedure for LUT Size VCP Code	113

Table 10-25: Compliance Procedure for Single Point LUT VCP Code	11	. 3
Table 10-26: Compliance Procedure for Block LUT VCP Code	11	
Table 10-27: Compliance Procedure for Remote Procedure Call VCP Code	11	4
Table 10-28: Compliance Procedure for TV-channel Up/Down VCP Code	11	4
Table 10-29: Compliance Procedure for Auto Setup On/Off VCP Code	11	(
Table 10-30: Compliance Procedure for Window Size, VCP Code		
Table 11-1: VCP Code Numeric Index	11	7

Figures

Figure 1-1: Basic Architectural Model	15
Figure 7-1: Image Adjustments	
Figure 7-2: Color Adjustments	
Figure 7-3: Image Geometry Adjustment	
Figure 7-4: Audio Adjustments	
Figure 7-5: Windows Operations	
Figure 7-6: DPVL Support	

Preface

Intellectual Property

Copyright © 2006 - 2011 Video Electronics Standards Association. All rights reserved.

Every precaution has been taken in the preparation of this document, however the Video Electronics Standards Association and its contributors assume no responsibility for errors or omissions, and make no warranties, expressed or implied, of functionality or suitability for any purpose.

Trademarks

All trademarks used within this document are the property of their respective owners and must be identified here, as required by the current release of VESA Policy 200 and other policies referenced in that policy.

Holder Name	Contact Information	Trademark(s)
Video Electronics Standards Association	support@vesa.org	VESA, DisplayPort, DMT, DDC/CI, DP, EDDC, EDID, and MCCS
Digital Display Working Group	NA	DVI (Digital Visual Interface)
Digital Content Protection LLC	digital-cp.com	HDCP (High-bandwidth Digital Content Protection)
Philips	NA	DPCP (DisplayPort Content Protection) and DPCD (DisplayPort Configuration Data) I ² C

Patents

The following holders have voluntarily disclosed the existence of patents or other intellectual property rights (collectively, "*IPR*") and claim that compliance with this specification may involve the use of said *IPR*. VESA takes no position concerning the evidence, validity, and scope of this claim to or relevance of this *IPR*.

The holders of this *IPR* have assured VESA that they are willing to license the *IPR* on *RAND* terms. The written statement made by the holder to this *IPR* is registered with VESA.

Holder Name	Contact Information	Claims Known
None	None	None

Attention is drawn to the possibility that some of the elements of this VESA *Specification* may be the subject of *IPR* other than those identified above. VESA shall not be held responsible for identifying any or all such *IPR*, and has made no inquiry into the possible existence of any such *IPR*.

THIS SPECIFICATION IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY DISCLAIMED. ANY IMPLEMENTATION OF THIS SPECIFICATION SHALL BE MADE ENTIRELY AT THE IMPLEMENTER'S OWN RISK, AND NEITHER VESA, NOR ANY OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER DIRECTLY OR INDIRECTLY ARISING FROM THE IMPLEMENTATION OF THIS SPECIFICATION.

Support for this Document

Clarifications and application notes to support this document may be written. To obtain the latest document and any support documentation, contact VESA.

If you have a product, which incorporates this document, you should ask the company that manufactured your product for assistance. If you are a manufacturer, VESA can assist you with any clarification you may require. Submit all comments or reported errors in writing to VESA using one of the following methods.

Fax: 510-651-5127, direct this fax to Technical Support at VESA

E-mail: support@vesa.org

Mail: Technical Support

VESA

39899 Balentine Drive, Suite 125

Newark, CA 94560

Acknowledgements

This document would not have been possible without the efforts of the VESA DisplayPort Task Group's Control Layer Subgroup. In particular, the following individuals and their companies contributed significant time and knowledge to this version of the standard.

Table 0-1: Main Contributors to Version 2.2a

Name	Company	Contribution
Syed Athar Hussain	A M pple	
Maciej Maciesowicz	Apple	
Colin Whitby-Strevens	Apple	
Vishnu Balraj	Intel	
Jim Webb	Luxtera	Subgroup Leader & Editor

Revision History

MCCS Version 1, September 11, 1998

Initial release of the standard

MCCS Version 2, October 17, 2003

A major update, in particular to provide support for flat panel displays and the VESA DPVL (Digital Packet Video Link) standard. It extends the scope and range of controls for television functions and introduces commands to permit individual control of multiple windows on a display. Many of the existing VCP codes have expanded functionality and/or clearer definitions. To ensure that the requirements of compatibility and an intuitive user interface can be readily achieved, support for two commands (see Section 5) is a compliance requirement for MCCS Version 2.

Additionally, new classes of VCP codes associated with asset management, secondary displays (for information, status, etc.) and remote program calls to the display processor are introduced. It is expected that these will become important to the industry over time.

MCCS Version 2, Revision 1, May 28, 2005

A revision and update that reflects industry experience with the version 2 standard and also adds support for new functionality that is being introduced in products.

Additionally, includes significant effort to improve the clarity and usability of the standard.

MCCS Version 3, July 27, 2006

A revision and update that reflects industry experience with the Version 2, Revision 1 standard and also adds support for new functionality that is being introduced in products. It also introduces compliance requirements for each VCP code.

MCCS Version 2, Revision 2, January 26, 2009

A revision and update incorporating VCP codes and document format adopted in MCCS_v3.0 while maintaining full compatibility with MCCS_v2.1.

VCP 02_h, 52_h, and 03_h have been enhanced, each now include a FIFO.

VCP CC_h (OSD Language), VCP 60_h (Input Select) and VCP D0_h (Output Select) have been expanded.

New VCP codes $(6D_h 6F_h 71_h \text{ and } 6B_h)$ have been added to support separate control of Red, Green, Blue, and White backlights.

VCP 13_h (Backlight control) and C7_h (Display Enable Key) have been deprecated.

MCCS Version 2, Revision 2a, January 13, 2011

Update adding support for VCP code 65h Audio: Jack Connection Status.

Removed compliance column in VCP tables.

Updated VCP 63_h Audio: Speaker Select to include new channels.

Added limit fields in ML and MH in VCP 66h and 8Dh

1 Introduction

This standard provides a standard list of display controls and commands, for use, irrespective of the specific interface used to support the necessary communications between the host and the display.

The VCP code list is chosen to be the minimum list necessary to support virtually all parameters related to the display product set-up and operation. A number of VCP codes are reserved for manufacturers to use where they have design features not covered by the standard VCP codes – these codes must be considered proprietary, since generally the purpose of these unique VCP codes will only be known to the manufacturer and accessing these VCP codes may have unknown effects.

1.1 Acronyms

Table 1-1: List of Acronyms

Acronym	Stands For
С	Continuous
CRC	Cyclic Redundancy Check
CRT	Cathode Ray Tube
DP HPD	DisplayPort Hot Plug Detect
DPM	Display Power Management
DPMS	Display Power Management Signaling
DPVL	Digital Packet Video Link
EL	Electroluminescent
FC	Front Center
FCH	Front Center High
FED	Field Emission Device
FL/FR	Front Left / Front Right
FLC/FRC	Front Left of Center / Front Right of Center
FLH/FRH	Front Left High / Front Right High
FLW/FRW	Front Left Wide / Front Right Wide
HPD	Hot Plug Detect
LCD	Liquid Crystal Display
LCoS	Liquid Crystal on Silicon
LFE	Low Frequency Effect [Sub-Woofer]
LUT	Look Up Table
MEM	Micro Electro-Mechanical
MH	High order bytes when using four data bytes
ML	Low order bytes when using four data bytes
NC	Not Continuous
OLED	Organic Light Emitting Diode
OSD	On Screen Display
R / W	Read / Write
RC	Rear Center
RL/RR	Rear Left / Rear Right
RLC/RRC	Rear Left of Center / Rear Right of Center
RO	Read-only
SH	High order bytes when using two data bytes
SL	Low order bytes when using two data bytes

Table 1-1: List of Acronyms

Acronym	Stands For
SL/SR	Side Left/ Side Right
T	Table
TC	Top Center
VCP	Virtual Control Panel
WO	Write-only

1.2 Glossary

Table 1-2: Glossary of Terms

Terminology	Definition
Display Controller	Generic term used to indicate the function (usually provided by an integrated circuit and/or firmware) that controls all the functions of the display.
Orbiting	A technique applied to some displays which periodically moves the image by small amounts. This to minimize the visual effects of image burn-in.
Plasma	Plasma gas is used to excite phosphors that generate the visual image.

1.3 References

Versions identified here are current, but users of this standard should ensure they have the latest versions of referenced standards and documents.

Table 1-3: Reference Documents

Source	Name	Version/Date	
VESA	Policy 200B Intellectual Property Rights	Version B	Dec 2004
VESA	Glossary of Terms (www.vesa.org)	Current	
VESA	Display Identification Data (DisplayID) Standard	Version 1.1	Mar 2009
VESA	Digital Packet Video Link (DPVL) Standard	Version 1	Apr 2004
VESA	Discrete Monitor Timing (DMT) Standard	Revision 12	Nov 2008
VESA	Display Data Channel Command Interface (DDC/CI) Standard	Version 1, Rev 1	Oct 2004
VESA	Display Information Extension Block (DI-EXT) Standard	Release A	Aug 2001
VESA	Display Power Management (DPM) Standard	Release A	Mar 2003
VESA	Display Power Management Signaling (DPMS) Standard	Version 1.1	Aug 1993
VESA	Enhanced Display Data Channel (E-DDC) Standard	Version 1.2	Mar 2007
VESA	Enhanced Extended Display Identification (E-EDID) Standard	Release A, Rev 1	Feb 2000
VESA	Flat Panel Display Measurement (FPDM) Standard	Version 2	June 2001
VESA	MCCS Update Document	Latest	
VESA	Video Timing Block Extension Data (VTB-EXT) Standard	Release A	Nov 2003
ACCESS.bus Industry Group	ACCESS bus	Revision 3	Sept 1995
CEA	CEA-861C, A DTV profile for Uncompressed High Speed Digital Interfaces	Revision C	Sept 2005

1.4 Terminology Conventions

1.4.1 Keywords

Table 1-4: Keyword Conventions

Term	Definition			
May	A keyword that indicates a choice with no expressed or implied preference			
Should	A keyword that indicates a choice with a strong, expressed preference – equivalent to "is strongly recommended"			
Must	A keyword that indicates a mandatory requirement for compliance with this standard			
Required	A keyword that indicates a mandatory element required for compliance with this standard			

1.4.2 VCP Code Type

The 'Type' column in Table 8-2, Table 8-4, Table 8-6, Table 8-8, Table 8-9, Table 8-11, Table 8-13, Table 8-15, and Table 8-17, and Table 8-18 refer to the permissible action(s) with each VCP code:

WO: Write-only
RO: Read-only
R/W: Read or Write

1.4.3 VCP Code Function

The 'Function' column in Table 8-2, Table 8-4, Table 8-6, Table 8-8, Table 8-9, Table 8-11, Table 8-13, Table 8-15, Table 8-17, and Table 8-18 refer to the permissible action(s) with each VCP code:

C : Continuous NC : Non-continuos

T : Table

1.4.4 VCP Code Compliance

The 'Compliance' column in Table 8-2, Table 8-4, Table 8-6, Table 8-8, Table 8-9, Table 8-11, Table 8-13, Table 8-15, Table 8-17, and Table 8-18 provides a reference to the appropriate compliance procedure.

1.4.5 Use of 'Horizontal', 'Top' and 'Bottom'

In Table 8-2, Table 8-4, Table 8-6, Table 8-8, Table 8-9, Table 8-11, Table 8-13, Table 8-15, and Table 8-17, 'horizontal' refers to the axis of the display parallel to the local horizon (usually the floor, ceiling or work surface) when the display is in its normal, intended orientation.

In Table 8-2, Table 8-4, Table 8-6, Table 8-8, Table 8-9, Table 8-11, Table 8-13, Table 8-15, and Table 8-17, 'top' refers to the first image line addressed at the start of each frame regardless of the display orientation. Similarly 'bottom' refers to the last image line addressed in each frame.

1.4.6 Data Byte Designations

For consistency with the DDC/CI standard, the designations SH and SL will be used to indicate the high order and low order bytes respectively on both read and write operations involving two data bytes (e.g. GetMax or GetCurrent) will designate the two data bytes as SH-SL.

Read operations involving four data bytes (e.g. GetVCPFeature) will designate the four data bytes as MH-ML-SH-SL.

Other read and write operations (e.g. GetTable and SetTable) will designate the data bytes sequentially as byte0-byte1-byte2-byte3--byteN.

In summary, except in the case of Table operations, write commands (host \rightarrow display) involve two data bytes (designated SH and SL) and read commands (display \rightarrow host) involve four data bytes (designated MH, ML, SH and SL), Each Table command defines the number of data bytes associated with write and read operations (designated byte0, byte1, byte2, ... byteN).

If using a communications interface other than DDC/CI then these terms should be appropriately mapped to the protocol being used.

1.5 Overview of MCCS v2.2

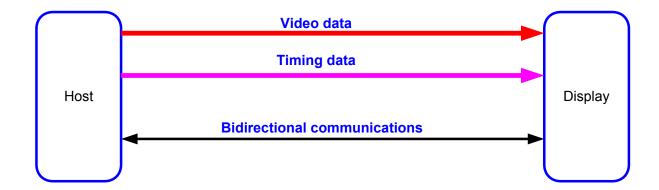


Figure 1-1: Basic Architectural Model

1.5.1 Summary

This standard describes the standardized list of control commands used to control a display by means of an application running on a host. This concept is referred to a 'virtual control panel' or VCP and the individual commands are referred to as 'VCP codes'.

The list of commands and controls is kept to a minimum while supporting the control of all common parameters related to the image settings on the display and other common features.

This standard does not specify how particular commands are implemented with a particular interface protocol nor does this document describe the way a particular protocol queries and changes the settings of the controls, see appropriate interface standard for these details e.g. VESA DDC/CI standard

This standard also contains the requirements and procedures to achieve and verify compliance for each VCP code: see section 10 for details.

A companion document will be maintained, called MCCS_UP.pdf. It will include such things as correction of known errors, extensions of VCP code value definitions and new VCP codes proposed for inclusion in the next MCCS revision.

1.5.2 Background

Due to the emergence of bidirectional communication interfaces (Analog Interface or DVI using an I²C bus, USB, etc.) on hosts such as PCs, workstations and set-top boxes, it has become possible to control the settings of the display by means of an application running on the host Soft OSD.

Historically, displays have provided hardware control panels (on screen display or Hard OSD) to accomplish these adjustments. Using the computer in addition, or instead of, to these manual controls increases user convenience and provides the opportunity for a standardized user interface regardless of the manufacturer of a particular display.

Although there are different communication paths, the basic content of the information communicated can be standardized offering everyone the same experience in accomplishing the same goal.

The scope of MCCS is not limited to traditional 'computer \Leftrightarrow monitor' applications. Digital television products have suitable bidirectional communication paths (I²C based) built into DVI and HDMI interface. Additionally some VCP codes are specifically for television applications.

In general, this standard will use the term 'host' to refer to the video signal source (PC, workstation, set-top-box, etc.) and the term 'display' to refer to any device that receives a signal from the source and converts that signal to a visible image (e.g. computer monitor, television, etc.).

The following drawing illustrates the basic architectural model. Note that the video data and timing data are the generalized common element of all video interfaces. The bidirectional communication between a host and display may be part of a standard video interface (e.g. DDC/CI) or an external interface (e.g. USB, RS232).

2 Co-existence of Local and Remote Adjustment Options

A display may have the facility to be adjusted both in the conventional manner (hardware/firmware OSD) with user controls on the display bezel (usually), known as local adjustment, and also over an interface (e.g. DVI with DDC/CI) using the MCCS command set, known as remote adjustment. In that case, there is a possibility that the local adjustment and remote adjustment options may lose synchronization causing user confusion and loss of confidence.

The following implementation recommendations provide ways to avoid this situation:

2.1 Remote Adjustment Always Takes Priority

Whenever the software based adjustment system is active, the hardware based adjustment system is disabled without user intervention.

- If the hardware-based system is active and the software-based system is active, then the hardware based adjustment system should be closed.
- If the software-based system is active and the user, attempts to activate the hardware-based system then the user should only get a message indicating that the software-based system is active.

2.2 Remote and Local Adjustment May be Active Simultaneously

If it is desired that the local and remote adjustment options can be used interactively, care must be used to ensure that the local and remote adjustment options remain synchronized, particularly the current control values. VCP codes 02_h and 52_h are designed to allow this synchronization to be maintained without user intervention or knowledge.

3 Functional Characteristics

Display devices enable the user of an application to view the results of the actions taken. The primary purpose of a display device is to present to the user the image supplied by the host system. Display devices typically include a number of user controls, the details vary from model to model and between technologies. However, many allow the user to set luminance, contrast, picture size, position, and color balance. In addition, displays frequently have a number of internal settings that are changed to optimize operation with different video display formats. Some display devices have other features, e.g. audio, which may also be controlled using VCP codes.

It is desirable for the host system to be able to control these settings directly, as well as to be able to read data regarding the current set-up of the display.

3.1 Operational Model

The VCP coded controls are characterized as being continuous, non-continuous or table controls.

- Continuous controls allow for all values between zero and a maximum value, generally these values may be either read or written.
- The non-continuous controls only support a limited number of values and may be read-only, write-only or read and write.
- Table commands support the transfer of blocks of data and may be read-only, write-only or read and write.

The communication between the host and the display consists of VCP codes and associated data along with the particular protocol overhead of the interface being used.

To enable the host to issue requests, the display has to be able to specify the supported VCP codes and associated data such as:

- For continuous controls: the maximum value supported by the display (the minimum value is zero by definition)
- For non-continuous control: the specific values supported by the display

NOTE:

- The terminology used in this section (Table 3-1) contained in Version 2.2, is generalized and not specific to any particular communications channel. Refer to the specification/standard for the particular communications channel being used for precise terminology.
- See individual VCP code definitions for details.
- Requests are issued by the host and may be followed by a data transfer. Some requests need further specification, in those cases the parameters are indicated in the brackets in Table 3-1.

Table 3-1: Generalized Host Requests

Control	Description
"GetSupportedControls"	This request from the host must cause the display to respond with a "capability string" that defines supported VCP codes.
"GetMax" (VCP code)	Requests the possible range of values of the VCP codes supported by the display device.
	The display responds with either the maximum possible value (in case of a continuous control) or the maximum number of different values of the control (in case of a non-continuous control).
"GetPossible" (VCP code)	Requests the possible values of the non-continuous VCP codes supported by the display.
	The display responds with the supported values for the specified non-continuous VCP code.
"GetCurrent" (VCP code)	Requests the current value of the specified VCP code.
	The display responds with the current value of the specified VCP code.
"SetCurrent" (VCP code)	Sets the current values of the virtual controls supported by the display device.
	The display must overwrite the currently stored value of the specified VCP code with the new value supplied.
"GetEDID"	This request is issued by the host to get the EDID information (in the binary format specified in the E-EDID standard) of the display.
"GetControlRelation" (VCP code)	This request asks for the identification of any other VCP codes affected by the alteration of the control indicated by the VCP code.
	Required for cases where there is interaction between controls.
"GetTable" (VCP code)	Requests that a block of data, specified by the control code, is transferred to the host
"SetTable" (VCP code)	Transfers a block of data to the display, storage location is defined in the definition of the control code.

3.2 Implementation of MCCS on Different Interfaces

MCCS provides a standard set of controls for use over a bidirectional interface between the host and the display. If duplication of these controls occurs within the same physical interface, the support of duplicated controls by MCCS needs careful consideration by the implementer.

Depending on the interface used, duplication of functionality may occur, providing the host with multiple ways to control the same aspect of the display. It is recommended that duplication of support using MCCS VCP codes be avoided.

<u>Caution:</u> When multiple methods of control for a display function exist, synchronization must be addressed.

4 Display VCP Codes

All control codes are listed in Section 8, including name, code, and definition. They are organized in functional groups defined in Section 4.2; Section 0 contains cross-reference charts for all VCP codes.

NOTE: All VCP codes between 00_h and DF_h inclusive that are not defined here are reserved for future use and may become active in future revisions of this standard. VCP codes between E0_h and FF_h are reserved for manufacturer use to enable support for a capability not defined in the standard.

4.1 VCP Codes That Return More Than 2 Bytes

Some VCP codes - e.g. AC_h (Horizontal Frequency) and C8_h (Display Controller ID) - return more than 2 bytes and are not 'table' type commands. The organization of the returned bytes is defined in the DDC/CI standard (see Get VCP Feature & VCP Feature Reply), but is included here for completeness.

The four bytes available for return are labeled MH, ML, SH and SL. If only 3 bytes are returned, for example, the MH byte must be set = 00_h . MH and ML, are the two high bytes, SH and SL, are the two low bytes.

For table commands, the number of bytes written or read depends on the particular VCP code but in all cases the first byte transmitted is designated "byte 0", the second byte transmitted is designated "byte 1", etc.

4.2 Control Grouping

Controls are grouped by area of applicability into:

4.2.1 Preset Operations (see Section 8.1)

This group relates to the selection from a number of preset options.

4.2.2 Image Adjustment (see Section 8.2)

This group relates to the adjustment of the displayed image excluding geometric adjustments.

e.g. luminance and color

4.2.3 Display Control (see Section 8.3)

This group covers items relating to information and overall control of the display. e.g. the number of hours that display has been in use and the OSD (On Screen Display) language.

4.2.4 Geometry (see Section 8.4)

This group provides support for image geometry and spatial adjustments.

4.2.5 Miscellaneous Functions (see Section 8.5)

This group covers items not included elsewhere.

4.2.6 Audio Functions (see Section 8.6)

This group covers items relating to the audio (input and output) of the display device.

4.2.7 DPVL Functions (see Section 0)

This group is for the commands required to support the VESA DPVL standard.

4.2.8 Manufacturer Specific (see Section 8.8)

This group is reserved for manufacturer specific codes.

NOTE: In some cases, a VCP code does not fit exactly into one of these groups. In this case they have been classified according to their typical usage.

4.3 Control Function

4.3.1 Continuous Controls

Continuous controls are controls that accept any value from zero to a maximum value specific for each control. All continuous controls are read and write enabled. Continuous controls are indicated by C in the 'function' column.

4.3.2 Non-continuous Controls

The non-continuous controls accept only specific values. The valid values of these controls do not need to be continuous in value. Non-continuous controls can be "read and write", "read-only" or "write-only". Indicated by NC in the 'function' column.

4.3.3 Table Controls

These controls are typically associated with a block of data where only the overall structure is explicitly defined but not the contents. Table controls can be "read and write", "read-only" or "write-only. Table controls are indicated by 'T' in the 'function' column.

4.3.4 Manufacturer-specific Controls.

The 32 control codes E0h through FFh have been allocated to allow manufacturers to issue their own specific controls either where the defined VCP codes do not provide a required function or where the added function is considered proprietary.

Caution: Use of these codes has the risk of causing incompatibility and / or unpredictable behavior.

Example:

Consider the case when two display manufacturers choose to use the same 'manufacturer VCP code' for different functions (or different implementations of the same function) but the user chooses not to use the specific software support supplied or recommended for his particular display – he may use a general purpose MCCS support application, native support built into the operating system or a MCCS support application intended for a different display model. In this case, the resulting behavior is unpredictable, ranging from no support for the function which uses a 'manufacturer VCP code' to incorrect control and adjustment of the function. In all cases this will likely result in an annoyed user and a service call, in extreme cases it may result in a situation where the user cannot return the display to normal operation.

It is recommended that these codes are used with caution and only when strictly necessary.

5 Required VCP Codes

MCCS Version 2 and MCCS Version 2 Revision 1, require that the VCP code DF_h, 'VCP Version' and VCP code 02_h, 'New control value', are supported.

MCCS Version 2 Revision 2 adds the required VCP codes C8_h 'Display Controller ID'.

- Support of DF_h (VCP Version) allows application code to correctly interpret responses from the display and provide an intuitive user interface.
 - Use of this VCP code enables correct forward and backward compatibility between the display and any host code seeking to remotely control the display.
 - The host code must ensure that it does not try to utilize features or functions that are not supported at the reported display MCCS version and revision level.
 - Higher revision levels of the MCCS standard indicate that backward compatible change(s) have been made so if the display supports a higher revision level than the host code, the host code must handle all supported display VCP codes defined at its version and revision level.
 - Higher version levels indicate that some degree of incompatibility has been introduced.
 However, the host codes should attempt to decode the capability string and handle all possible VCP codes.
- Support of 02_h (New Control Value) enables a simple way to maintain synchronization between a software display control application and the hardware/firmware based control in the display.
 - See Section 2 for a discussion of the issues involved and section B.2 for a recommended implementation.
- Support of C8_h (Display Controller ID) enables the host to better identify the sink and its controller. This can be useful during customer service to identify unique versions of firmware and hardware.

Additionally, all unassigned VCP codes are reserved for future use and MCCS compliant products must not use them. If an undefined function is required then one of the VCP codes reserved as 'manufacturer's specific codes' must be used - the sole exception being when the VESA Control Subgroup has decided to include a new VCP code function in the MCCS update document (see Section 0) and specifies the VCP code that is proposed for a future MCCS standard revision.

6 Capability String Format & Terminology

The capability string delineates display information and supported VCP codes. The following format is recommended to obtain display industry consistency. Table 6-1 lists the capability string abbreviations. More complete definitions can be found in Section 7 of the Access Bus Specification except for window() which is introduced here.

Table 6-1: Capability String Abbreviations

Terminology	Definition
prot()	Used to specify the protocol class
type()	Identifies type of display
cmds()	An ASCII string listing supported VCP codes
vcp()	A list of the supported VCP codes in ASCII. Also contains a list of the supported values for each non-continuous VCP code
model()	The display model number (may be alpha-numeric)
mccs_ver()	Specifies the supported version and revision of the MCCS standard.
window()	Specifies the window#, window type (PIP or Zone) safe area size (bounded safe area) maximum size of the window, minimum size of the window, and window supports VCP codes for control/adjustment.
vcpname()	Allows a display to specify an alternative name to be used for a control

The capability string header may contain information about the display for prot(), type(), model(), cmds(), vcp(), mccs ver(x.x), window()

NOTE: If the host receives a capability string with non-standard abbreviations, the non-standard portions of the capability string should be ignored.

Example:

Prot(display) type(lcd) model(xxxxx) cmds(xxxxx) vcp(02 03 10 12 C8 DC(00 01 02 03 07) DF) mccs_ver(2.2) window1(type (PIP) area(25 25 1895 1175) max(640 480) min(10 10) window(10)) vcpname(10(Brightness))

The above string explicitly states that New Control Value, Factory Restore, Luminance, Contrast, Display Application Presets, and VCP Version are supported VCP codes but that only Luminance adjustments are supported within a window. It also lists the non-continuous values that are supported by the 'Display Application' VCP code. The vcpname string indicates that 'Brightness' should be used instead of Luminance when referring to adjustments using VCP code 10_h.

VCP 02_h: New Control Value

VCP 04_h: Factory Restore

VCP 10_h: Luminance

VCP 12_h: Contrast

VCP DC_h: Select Display Application

Display Application presets available using VCP DC_h

00_h: Standard / default mode

01_h: Productivity (office applications)

02_h: Mixed (e.g. internet browsing)

03_h: Movie

07_h: Professional (no signal processing in display)

VCP DF_h: VCP Version

Each display input source should have its own capability string, i.e. LCD analog and digital inputs should have independent unique capability strings since there will be, generally, a different set of VCP codes supported on each input.

VCP codes with bit-mapped functions must not report the bits in the capability string; the host must read the individual VCP code to get the details of the supported function set.

When the window() string reports support of non-continuous VCP codes then it is the responsibility of the software application to determine the actual values supported.

6.1 Capability String Compliance

Section 10.5 contains the compliance procedure for the capability string.

7 Functional Grouping of VCP Codes

This section provides a number of tree structures; each covers the VCP codes that may affect a specific area of the display operation.

Example:

A restore function may clear a window or change one or more of the attributes of the image within that window.

NOTE:

Some VCP codes appear in several trees.

VCP codes have been placed in tree(s) based on the common perception of the effect of the VCP code and not necessarily a technically accurate interpretation.

Some trees reference other tree(s)

7.1 Image Adjustments

·		VCF	code &	type	Table #
	Restore factory defaults	04 _h	WO	NC	8-2
	Restore factory luminance / contrast values	05 _h	WO	NC	8-2
	Restore factory TV defaults	06 _h	WO	NC	8-2
	Degauss	01 _h	WO	NC	8-13
	Auto setup on/off	A2 _h	WO	NC	8-4
	Auto setup	1E _h	R/W	NC	8-4
	Clock	0E _h	R/W	C	8-4
	Clock phase	3E _h	R/W	С	8-4
	Luminance	10 _h	R/W	С	8-4
Backlight control					
	Backlight Level: White	6B _h	R/W	С	8-4
	Backlight Level: Red	6D _h	R/W	С	8-4
	Backlight Level: Green	6F _h	R/W	С	8-4
	Backlight Level: Blue	71 _h	R/W	С	8-4
	Contrast	12 _h	R/W	С	8-4
	Focus	1C _h	R/W	С	8-4
	TV Sharpness	8C _h	R/W	С	8-4
	Active control	52 _h	RO	NC	8-13
	Performance preservation	54 _h	R/W	NC	8-13
	Gamma	72 _h	R/W	NC	8-4
	H moiré	56 _h	R/W	С	8-4
	V moiré	58 _h	R/W	С	8-4
	Adjust zoom	7C _h	R/W	С	8-4
	Display scaling	86 _h	R/W	NC	8-8
	Horizontal mirror (flip)	82 _h	R/W	NC	8-8
	Vertical mirror (flip)	84 _h	R/W	NC	8-8
	Screen orientation	AA_h	RO	NC	8-4
	Velocity scan modulation	88 _h	R/W	NC	8-4
	TV channel up / down	8B _h	WO	NC	8-13
	TV sharpness	8C _h	R/W	С	8-4
	TV contrast	8E _h	R/W	С	8-4
	TV black level / luminance	92 _h	R/W	С	8-4
	Store / Restore Settings	B0 _h	WO	NC	8-2
	OSD	CA _h	R/W	NC	8-8
	OSD Language	CC_h	R/W	NC	8-8
	Stereo video mode	D4 _h	R/W	NC	8-4
	Scan mode	DA _h	R/W	NC	8-11
	Image mode	DB_h	R/W	NC	8-8
	Display application	DCh	R/W	NC	8-4

Figure 7-1: Image Adjustments

7.2 Color Adjustments

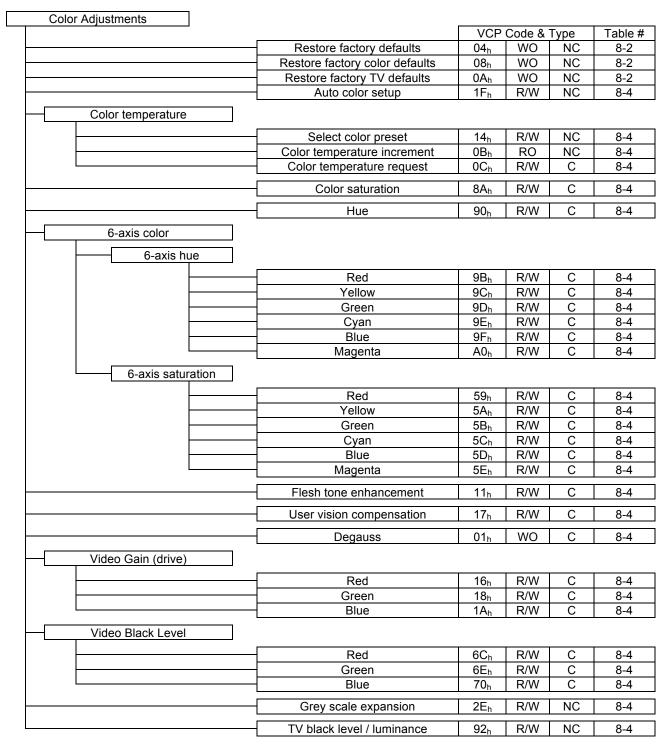


Figure 7-2: Color Adjustments

7.3 Image Geometry Adjustment

		VCP	Code &	Туре	Table #
	Restore factory defaults	04 _h	WO	NC	8-2
	Restore factory geometry defaults	06 _h	WO	NC	8-2
	Restore factory TV defaults	0A _h	WO	NC	8-2
	Auto setup	1E _h	R/W	NC	8-4
	Clock	0E _h	R/W	С	8-4
	Clock phase	3E _h	R/W	С	8-4
Horizontal					
	Keystone	42 _h	R/W	С	8-11
	Linearity	2A _h	R/W	C	8-11
	Linearity balance	2C _h	R/W	С	8-11
	Mirror (flip)	82 _h	R/W	NC	8-11
	Parallelogram	40 _h	R/W	С	8-11
	Pincushion	24 _h	R/W	С	8-11
	Pincushion balance	26 _h	R/W	С	8-11
	Position (phase)	20 _h	R/W	С	8-11
	Size	22 _h	R/W	С	8-11
	Convergence R/B	28 _h	R/W	С	8-11
	Convergence M/G	29 _h	R/W	С	8-11
Vertical					
	Keystone	43 _h	R/W	С	8-11
	Linearity	3A _h	R/W	С	8-11
	Linearity balance	3C _h	R/W	С	8-11
	Mirror (flip)	84 _h	R/W	NC	8-11
	Parallelogram	41 _h	R/W	С	8-11
	Pincushion	34 _h	R/W	С	8-11
	Pincushion balance	36 _h	R/W	С	8-11
	Position (phase)	30 _h	R/W	С	8-11
	Size	32 _h	R/W	С	8-11
	Convergence R/B	38 _h	R/W	С	8-11
	Convergence M/G	39 _h	R/W	С	8-11
	Rotation	44 _h	R/W	NC	8-11

Figure 7-3: Image Geometry Adjustment

7.4 Audio Adjustments

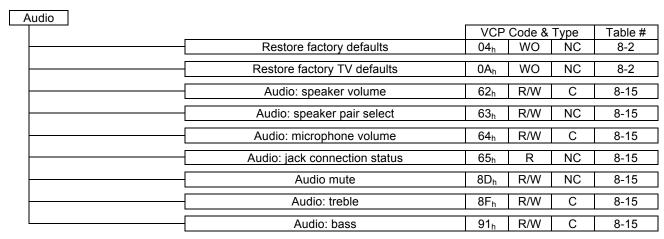


Figure 7-4: Audio Adjustments

7.5 Window Operations

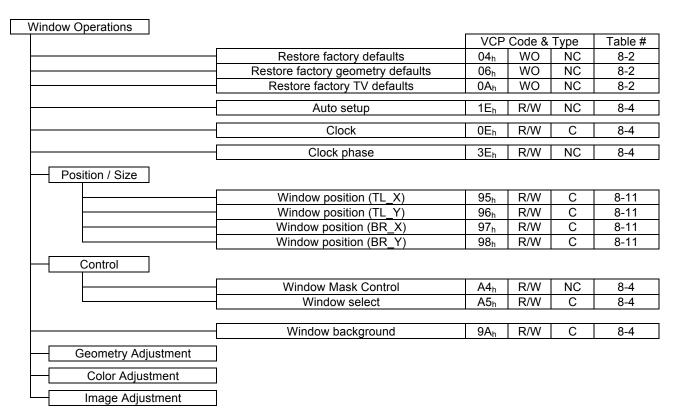


Figure 7-5: Windows Operations

7.6 DPVL Support

DPVL Support					
		VCP	Code &	Туре	Table #
	Monitor status	B7 _h	RO	NC	8-16
	Packet count	B8 _h	R/W	С	8-16
	Monitor X origin	B9 _h	R/W	С	8-16
	Monitor Y origin	BA _h	R/W	С	8-16
	Header error count	BBh	R/W	С	8-16
	Bad CRC error count	BC _h	R/W	С	8-16
	Client ID	BD _h	R/W	С	8-16
	Link control	BEh	R/W	NC	8-16

Figure 7-6: DPVL Support

Page 30 of 131

8 VCP Code Definitions

The following tables of this section define the VCP Code functions and usage. The compliance column of the tables contains a reference to the appropriate compliance procedure for each VCP Code.

8.1 Preset Operations VCP Codes

Table 8-1: Preset Functions VCP Code Cross-reference

VCP Code Name	Code	Compliance
Restore Factory Color Defaults	$08_{\rm h}$	10.8
Restore Factory Defaults	$04_{\rm h}$	10.8
Restore Factory Geometry Defaults	$06_{\rm h}$	10.8
Restore Factory Luminance / Contrast Defaults	05 _h	10.8
Restore Factory TV Defaults	$0A_h$	10.8
Save / Restore Settings	$\mathrm{B0_{h}}$	10.8
VCP Code Page	$00_{\rm h}$	10.8

Table 8-2: Preset Operations VCP Codes

Code	Name	Туре	Function	Description		
$00_{\rm h}$	Code Page	R/W	Т	READ:		
			Mandatory	Returns the Code	Page ID number Byte SL.	
				WRITE:		
				Sets the Code Pag	ge ID number.	
				Byte: SL		
				$00_{\rm h}$	Default (BASE) Code Page	
				$01_h \rightarrow DF_h$	Reserved	
				$E0_h \rightarrow FF_h$	Factory Defined Code Pages	
				Bytes: SH, ML, MH		
				$00_{\rm h}$	All other values reserved	
				VCP Code '00 _h ' has been undefined and must be ignored, in all MCCS versions prior to version 2.2 including version 3.0! Starting with this revision VCP 00 _h shall be set to 00 _h until otherwise defined in a future revision: Code Pages 01 _h thru DF _h are reserved and values in this range shall be considered invalid. Code Pages E0 _h thru FF _h may be used for Factory code definitions and values in this range may be supported by factory applications. On power up or display reset, the value of VCP 00 _h shall be set		
				to 00 _h .		
				NOTE:		
				This and future M	ICCS versions:	

Table 8-2: Preset Operations VCP Codes

Code	Name	Type	Function	Description		
				This VCP code can extend the number of available VCP commands beyond those on code page 00_h by declaring new code pages. In such a case the capabilities string will include 00_h followed		
				by $XX_h XX_h XX_h$ indicating the <u>additional</u> active code pages. To access VCP codes on page 1 the host must first write the value 01_h to VCP 00_h . The host can verify the current code page # by reading a value of 01_h at VCP 00_h . To return to access the (base) VCP codes on page 0, the host must write 00_h to VCP 00_h .		
				If no additional code pages are defined, the value of VCP 00_h shall read 00_h and shall not change if written to by the host. Multiple applications must verify the code page before changing VCP code values.		
04 _h	Restore Factory Defaults	WO	NC	Restore all factory presets including luminance / contrast, geometry, color and TV defaults. Any non-zero value causes defaults to be restored. A value of zero must be ignored		
05 _h	Restore Factory Luminance / Contrast Defaults	WO	NC	Restores factory defaults for luminance and contrast adjustments. Any non-zero value causes defaults to be restored. A value of zero must be ignored.		
06 _h	Restore Factory Geometry Defaults	WO	NC	Restore factory defaults for geometry adjustments. Any non-zero value causes defaults to be restored. A value of zero must be ignored.		
08 _h	Restore Factory Color Defaults	WO	NC	Restore factory defaults for color settings. Any non-zero value causes defaults to be restored. A value of zero must be ignored.		
0A _h	Restore Factory TV Defaults	WO	NC	Restore factory defaults for TV functions. Any non-zero value causes defaults to be restored. A value of zero must be ignored.		
B0 _h	Settings	WO	NC	Store/Restore the user saved values for current mode. Byte: SL		
				01 _h Store current settings in the monitor. 02 _h Restore factory defaults for current mode. If no factory defaults exist, then restore user values for current mode.		
				$\geq 03_h$ Reserved and must be ignored.		

8.2 Image Adjustment VCP Codes

 Table 8-3: Image Adjustment VCP Code Cross-reference

6 Axis Hue Control: Green 9F _h 10.10 6 Axis Hue Control: Green 9P _h 10.10 6 Axis Hue Control: Magenta A0 ₀ 10.10 6 Axis Hue Control: Red 9P _h 10.10 6 Axis Hue Control: Wellow 9C _h 10.10 6 Axis Hue Control: Bue 5D _h 10.10 6 Axis Saturation Control: Bue 5D _h 10.10 6 Axis Saturation Control: Green 5P _h 10.10 6 Axis Saturation Control: Green 5P _h 10.10 6 Axis Saturation Control: Green 5P _h 10.10 6 Axis Saturation Control: Red 15P _h 10.6 6 Axis Saturation Control: Red 15P _h 10.6 6 Axis Saturation 15P _h 10.11 6 Axis Saturation 15P _h 10.6 6 Axis Saturation 15P _h	VCP Code Name	Code	Compliance
6 Axis Hue Control: Cyan 6 Axis Hue Control: Green 9 D _h 10.10 6 Axis Hue Control: Magenta A0h 10.10 6 Axis Hue Control: Red 9 B _h 10.10 6 Axis Hue Control: Red 9 B _h 10.10 6 Axis Hue Control: Pellow 9 C _h 10.10 6 Axis Hue Control: Pellow 9 C _h 10.10 6 Axis Hue Control: Pellow 9 C _h 10.10 6 Axis Hue Control: Syelow 9 C _h 10.10 6 Axis Saturation Control: Gyan 5 C _h 10.10 6 Axis Saturation Control: Gyan 5 C _h 10.10 6 Axis Saturation Control: Green 5 B _h 10.10 6 Axis Saturation Control: Magenta 5 F _h 10.10 6 Axis Saturation Control: Wagenta 5 F _h 10.10 6 Axis Saturation Control: Yellow 5 A _h 10.10 6 Axis Saturation Control: Yellow 5 A _h 10.10 6 Axis Saturation Control: Yellow 10 Adjust Zoom 10 Color Setup 11 F _h 10.9 Auto Setup 11 F _h 10.9 Auto Setup 11 F _h 10.9 Auto setup On / Off 10 A2 _h 10 1.12.6 10 Backlight Control (Legacy) 11 B _h 10.6 Backlight Level: White 10 Backlight Level: White 11 Backlight Level: Blue 11 Color Setup 12 Color Setup 13 Color Setup 14 Color Setup 15 Color Setup 16 Color Setup 17 Color Setup 17 Color Setup 18 Color Setup 19 Color Setup 19 Color Setup 10 Co	6 Axis Hue Control: Blue	9F _h	10.10
6 Axis Hue Control: Magenta AO _h 10.10 6 Axis Hue Control: Nagenta AO _h 10.10 6 Axis Hue Control: Red 9B _h 10.10 6 Axis Hue Control: Yellow 9C _h 10.10 6 Axis Saturation Control: Blue 5D _h 10.10 6 Axis Saturation Control: Cyan 5C _h 10.10 6 Axis Saturation Control: Green 5B _h 10.10 6 Axis Saturation Control: Magenta 5F _h 10.10 6 Axis Saturation Control: Vallow 5A _h 10.10 6 Axis Saturation Control: Yellow 5A _h 10.10 <td></td> <td></td> <td></td>			
6 Axis Huc Control: Magenta AOh 10.10 6 Axis Huc Control: Red 9Bh 10.10 6 Axis Huc Control: Pellow 9Ch 10.10 6 Axis Saturation Control: Blue 5Dh 10.10 6 Axis Saturation Control: Cyan 5Ch 10.10 6 Axis Saturation Control: Green 5Bh 10.10 6 Axis Saturation Control: Magenta 5Eh 10.10 6 Axis Saturation Control: Red 5hh 10.10 6 Axis Saturation Control: Vellow 5Ah 10.10 6 Axis Saturation Control: Vellow 5Ah 10.10 Adjust Zoom 7Ch 10.6 Auto Color Setup 1Fh 10.9 Auto Setup 1Fh 10.9 Auto Setup On / Off A2h 10.12.6 Backlight Control (Legacy) 13h 10.6 Backlight Level: White 6Bh 10.6 Backlight Level: White 6Bh 10.6 Backlight Level: Green 6Fh 10.6 Backlight Level: Green 6Fh 10.6 Backlight Level: G	<u>-</u>		
6 Axis Huc Control: Red 9Bh 10.10 6 Axis Huc Control: Yellow 9Ch 10.10 6 Axis Saturation Control: Blue 5Dh 10.10 6 Axis Saturation Control: Cyan 5Ch 10.10 6 Axis Saturation Control: Green 5Bh 10.10 6 Axis Saturation Control: Magenta 5Eh 10.10 6 Axis Saturation Control: Red 59h 10.10 6 Axis Saturation Control: Yellow 5Ah 10.10 Adjust Zoom 7Ch 10.6 Auto Color Setup 1Fh 10.9 Auto Setup On / Off A2h 10.12 Backlight Control (Legacy) 13h 10.6 Backlight Level: White 6Bh 10.6 Backlight Level: Red 6Dh 10.6 Backlight Level: Blue 71h 10.6 Backlight Level: Blue 71h 10.6 Block LUT Operation 75h 10.11.4 Clock 0Eh 10.6 Clock Phase 3Eh 10.6 Clock Phase 3Eh 10.6 <td></td> <td></td> <td></td>			
6 Axis Hue Control: Yellow 9Ch 10.10 6 Axis Saturation Control: Blue 5Dh 10.10 6 Axis Saturation Control: Cyan 5Ch 10.10 6 Axis Saturation Control: Green 5Bh 10.10 6 Axis Saturation Control: Magenta 5Fh 10.10 6 Axis Saturation Control: Red 59h 10.10 6 Axis Saturation Control: Yellow 5Ah 10.2 8acklight Level: White 6Bh 10.6 8acklight Level: White 6Bh 10.6 8ackligh	_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
6 Axis Saturation Control: Green 5Ch 10.10 6 Axis Saturation Control: Green 5Bh 10.10 6 Axis Saturation Control: Magenta 5Eh 10.10 6 Axis Saturation Control: Red 59h 10.10 6 Axis Saturation Control: Yellow 5Ah 10.10 Adjust Zoom 7Ch 10.6 Auto Color Setup 1Fh 10.9 Auto Setup On / Off A2h 10.12.6 Backlight Control (Legacy) 13h 10.6 Backlight Control (Legacy) 13h 10.6 Backlight Level: White 6Bh 10.6 Backlight Level: Bed 6Dh 10.6 Backlight Level: Green 6Fh 10.6 Backlight Level: Blue 71h 10.6 Block LUT Operation 75h 10.11.4 Clock 0Eh 10.6 Clock Phase 3Eh 10.6 Clock Phase 3Eh 10.6 Color Temperature Increment 0Bh 10.7 Color Temperature Request 0Ch 10.7			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
6 Axis Saturation Control: Magenta 5E _h 10.10 6 Axis Saturation Control: Red 59 _h 10.10 6 Axis Saturation Control: Yellow 5A _h 10.10 Adjust Zoom 7C _h 10.6 Auto Color Setup 11F _h 10.9 Auto Setup 1E _h 10.9 Auto setup On / Off A2 _h 10.12.6 Backlight Control (Legacy) 13 _h 10.6 Backlight Level: White 6B _h 10.6 Backlight Level: White 6B _h 10.6 Backlight Level: Green 6F _h 10.6 Backlight Level: Green 6F _h 10.6 Backlight Level: Blue 71 _h 10.6 Block LUT Operation 75 _h 10.11.4 Clock 0E _h 10.6 Clock Phase 3E _h 10.6 Color Temperature Request 0C _h 1	-		
6 Axis Saturation Control: Red 59h 10.10 6 Axis Saturation Control: Yellow 5Ah 10.10 Adjust Zoom 7Ch 10.6 Auto Color Setup 1Fh 10.9 Auto Setup 1Eh 10.9 Auto Setup On / Off A2h 10.12.6 Backlight Control (Legacy) 13h 10.6 Backlight Level: White 6Bh 10.6 Backlight Level: White 6Bh 10.6 Backlight Level: Green 6Fh 10.6 Backlight Level: Blue 71h 10.6 Block LUT Operation 75h 10.11.4 Clock 0Eh 10.6 Clock Phase 3Eh 10.6 Color Saturation 8Ah 10.6 Color Saturation 8Bh 10.7 Color Temperature Increment 0Bh 10.7 Color Temperature Request 0Ch 10.6 Contrast 12h 10.6 Display Application DCh 10.7 Flesh Tone Enhancement 11h 10.7 Focus 1Ch 10.6			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Auto Setup 1Eh 10.9 Auto setup On / Off A2h 10.12.6 Backlight Control (Legacy) 13h 10.6 Backlight Level: White 6Bh 10.6 Backlight Level: Red 6Dh 10.6 Backlight Level: Green 6Fh 10.6 Backlight Level: Blue 71h 10.6 Block LUT Operation 75h 10.11.4 Clock 0Eh 10.6 Block LUT Operation 75h 10.6 Clock Phase 3Eh 10.6 Clock Phase 3Eh 10.6 Color Saturation 8Ah 10.6 Color Temperature Increment 0Bh 10.7 Color Temperature Request 0Ch 10.6 Contrast 12h 10.6 Display Application DCh 10.7 Flesh Tone Enhancement 11h 10.7 Focus 1Ch 10.6 Gamma 72h 10.6 Gray Scale Expansion 2Eh 10.7 <t< td=""><td><u> </u></td><td></td><td></td></t<>	<u> </u>		
Auto setup On / Off' $A2_h$ $10.12.6$ Backlight Control (Legacy) 13_h 10.6 Backlight Level: White $6B_h$ 10.6 Backlight Level: Red $6D_h$ 10.6 Backlight Level: Green $6F_h$ 10.6 Backlight Level: Blue 71_h 10.6 Backlight Level: Blue 71_h 10.6 Block LUT Operation 75_h $10.11.4$ Clock $0E_h$ 10.6 Clock Phase $3E_h$ 10.6 Color Saturation $8A_h$ 10.6 Color Temperature Increment $0B_h$ 10.7 Color Temperature Request $0C_h$ 10.6 Contrast 12_h 10.6 Display Application DC_h 10.7 Flesh Tone Enhancement 11_h 10.7 Focus $1C_h$ 10.6 Gamma 72_h 10.6 Gray Scale Expansion $2E_h$ 10.7 Horizontal Moiré 56_h 10.6 Hue 90_h 10.6	•		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		
Backlight Level: White $6B_h$ 10.6 Backlight Level: Red $6D_h$ 10.6 Backlight Level: Green $6F_h$ 10.6 Backlight Level: Blue 71_h 10.6 Block LUT Operation 75_h $10.11.4$ Clock $0E_h$ 10.6 Clock Phase $3E_h$ 10.6 Color Saturation $8A_h$ 10.6 Color Temperature Increment $0B_h$ 10.7 Color Temperature Request $0C_h$ 10.6 Contrast 12_h 10.6 Contrast 12_h 10.6 Display Application DC_h 10.7 Flesh Tone Enhancement 11_h 10.7 Focus $1C_h$ 10.6 Gamma 72_h 10.6 Gray Scale Expansion $2E_h$ 10.7 Horizontal Moiré 56_h 10.6 Hue 90_h 10.6 Luminance 10_h 10.6 Luminance	•		
Backlight Level: Red 6Dh 10.6 Backlight Level: Green 6Fh 10.6 Backlight Level: Blue 71h 10.6 Block LUT Operation 75h 10.11.4 Clock 0Eh 10.6 Clock Phase 3Eh 10.6 Color Saturation 8Ah 10.6 Color Temperature Increment 0Bh 10.7 Color Temperature Request 0Ch 10.6 Contrast 12h 10.6 Display Application DCh 10.7 Flesh Tone Enhancement 11h 10.7 Focus 1Ch 10.6 Gamma 72h 10.6 Gray Scale Expansion 2Eh 10.7 Horizontal Moiré 56h 10.6 Hue 90h 10.6 Luminance 10h 10.6 Luminance 10h 10.6 Lut Size 73h 10.11.4 Screen Orientation AAh 10.7 Select Color Preset			
Backlight Level: Green $6F_h$ 10.6 Backlight Level: Blue 71_h 10.6 Block LUT Operation 75_h $10.11.4$ Clock $0E_h$ 10.6 Clock Phase $3E_h$ 10.6 Color Saturation $8A_h$ 10.6 Color Temperature Increment $0B_h$ 10.7 Color Temperature Request $0C_h$ 10.6 Contrast 12_h 10.6 Display Application DC_h 10.7 Flesh Tone Enhancement 11_h 10.7 Focus $1C_h$ 10.6 Gamma 72_h 10.6 Gray Scale Expansion $2E_h$ 10.7 Horizontal Moiré 56_h 10.6 Hue 90_h 10.6 Luminance 10_h 10.6 Luminance 10_h 10.6 LUT Size 73_h $10.11.4$ Screen Orientation AA_h 10.7 Sharpness			
Backlight Level: Blue 71_h 10.6 Block LUT Operation 75_h $10.11.4$ Clock $0E_h$ 10.6 Clock Phase $3E_h$ 10.6 Color Saturation $8A_h$ 10.6 Color Temperature Increment $0B_h$ 10.7 Color Temperature Request $0C_h$ 10.6 Contrast 12_h 10.6 Display Application DC_h 10.7 Flesh Tone Enhancement 11_h 10.7 Focus $1C_h$ 10.6 Gamma 72_h 10.6 Gray Scale Expansion $2E_h$ 10.7 Horizontal Moiré 56_h 10.6 Hue 90_h 10.6 Luminance 10_h 10.6 LUT Size 73_h $10.11.4$ Screen Orientation AA_h 10.7 Select Color Preset 14_h 10.7 Sharpness 87_h 10.6	<u> </u>		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>		
Flesh Tone Enhancement 11_h 10.7 Focus $1C_h$ 10.6 Gamma 72_h 10.6 Gray Scale Expansion $2E_h$ 10.7 Horizontal Moiré 56_h 10.6 Hue 90_h 10.6 Luminance 10_h 10.6 LUT Size 73_h $10.11.4$ Screen Orientation AA_h 10.7 Select Color Preset 14_h 10.7 Sharpness 87_h 10.6			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		i	
Gray Scale Expansion $2E_h$ 10.7 Horizontal Moiré 56_h 10.6 Hue 90_h 10.6 Luminance 10_h 10.6 LUT Size 73_h $10.11.4$ Screen Orientation AA_h 10.7 Select Color Preset 14_h 10.7 Sharpness 87_h 10.6		i	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Luminance 10_h 10.6 LUT Size 73_h $10.11.4$ Screen Orientation AA_h 10.7 Select Color Preset 14_h 10.7 Sharpness 87_h 10.6			
LUT Size 73_h $10.11.4$ Screen Orientation AA_h 10.7 Select Color Preset 14_h 10.7 Sharpness 87_h 10.6			
Screen Orientation AA_h 10.7 Select Color Preset 14_h 10.7 Sharpness 87_h 10.6			
Select Color Preset 14h 10.7 Sharpness 87h 10.6			
Sharpness 87 _h 10.6			
Single Point LUT Operation 10.11.4	Single Point LUT Operation	74 _h	10.0

Table 8-3: Image Adjustment VCP Code Cross-reference

VCP Code Name	Code	Compliance
Stereo Video Mode	D4 _h	10.7
TV-Black Level / Luminance	92 _h	10.6
TV-Contrast	8E _h	10.6
TV-Sharpness	8C _h	10.6
User Color Vision Compensation	17 _h	10.6
Velocity Scan Modulation	$88_{ m h}$	10.6
Vertical Moiré	58 _h	10.6
Video Black Level: Blue	$70_{\rm h}$	10.6
Video Black Level: Green	6E _h	10.6
Video Black Level: Red	6C _h	10.6
Video Gain (Drive): Blue	$1A_h$	10.6
Video Gain (Drive): Green	18 _h	10.6
Video Gain (Drive): Red	16 _h	10.6
Window Background	9A _h	10.6
Window Control On / Off	$A4_h$	10.11.4
Window Select	$A5_h$	10.6
Window Size	$A6_h$	10.12.13
Window Transparency	$A7_{h}$	10.6

Table 8-4: Image Adjustment VCP Codes

Code	Name	Type	Function	Description	
0B _h	User Color Temperature Increment	RO	NC Interactive with VCP 14 _h	User Color Temperature Setting 14 _h to User 1, 2, codes 0B _h and 0C _h .	except Version 3.0, VCP 0Ch defines the when selected using VCP 14h. or 3, recalls values for and enables VCP ment in which the display can adjust the ment. Invalid 1 to 5000°K Increment Invalid
				Values of 0 and > 5000 a	re invalid and must be ignored.

Table 8-4: Image Adjustment VCP Codes

Code	Name	Type	Function	Description	
0C _h	User Color Temperature	R/W	C Interactive with VCP 14 _h	In Version 2.2 forward, except Version 3.0, VCP codes $0B_h$ and $0C_h$ define the User Color Temperature when selected using VCP 14_h . If the display is unable to achieve the requested color temperature, then it must move to the closest possible temperature. A value of 0 must be treated as a request for a color temperature of 3000° K. Values greater than 0 must be used as a multiplier of the color temperature increment (read using VCP $0B_h$) and the result added to the base value of 3000° K. Example: If VCP $0B_h$ returns a value of 50° K and VCP code $0C_h$ sends a value of 50 (decimal) then the display must interpret this as a request to adjust the color temperature to 5500° K. ($3000 + (50 * 50)$) K = 5500° K. NOTE: Applications using this function are recommended to read the actual color temperature after using this command and taking appropriate action. This control is only recommended if the display can produce a	
				continuously (at defined increment, see VCP code 0B _h) variable color temperature.	
0E _h	Clock	R/W	С	Increasing (decreasing) this value will increase (decrease) the video sampling clock frequency	
10 _h	Luminance	R/W	С	Increasing (decreasing) this value will increase (decrease) the Luminance of the image.	

Table 8-4: Image Adjustment VCP Codes

Code	Name	Type	Function	Description		
11 _h	Flesh Tone Enhancement	R/W	NC	Data size: Write = 2 bytes / Read = 4 bytes This control allows for selection of contrast enhancement algorithms. A possible value is selected by setting the corresponding bit = 1.		
				On a write a bit set = 1 in the SH-SL bytes must select the required level of enhancement.		
				NOTE: setting more than one bit = 1 is invalid and must be ignored by the display.		
				On a read the MH-ML bytes contain the flags corresponding to those functions that are supported by the display. The SH-SL bytes contain the bit field with the appropriate bit set to indicate the current status of the display.		
				The following table defines the SH byte, and the MH byte for read operations only.		
				Byte: SH / MH		
				Bit 7	No enhancement,	
				Bit 6	Enhancement 1: Enhancement except for automatically detected regions of "skin tone"	
				Bit 5	Enhancement 2: Enhancement including "skin tone" regions	
				Bit 4	Demo mode: Enhancement is applied to part of the displayed image only	
				Bit 3	User mode	
				Bits $2 \rightarrow 0$	Reserved, do not use	
				The following table defines the SL byte and the ML byte for read operations only.		
				Byte: SL / ML		
				Bits $7 \rightarrow 0$	Reserved, do not use	
12 _h	Contrast	R/W	С	Increasing (decreasing) this value will increase (decrease) the Contrast of the image.		
				NOTE: 1) The actual range of contrast over which this control applies is defined by the manufacturer. 2) Care should be taken to avoid the situation where the contrast ratio approaches 0 this may be non-recoverable since user will not be able to see the image.		

Table 8-4: Image Adjustment VCP Codes

Name	Type	Function	Description		
Backlight Control	R/W	С	Caution: This VCP code has be	een deprecated.	
			It must NOT be imp	elemented in new designs!	
			Support for separate I codes 6B _h 6D _h 6F _h an	Backlight Level controls are provided by VCP d 71 _h .	
			provided for reference		
				g) this value in the SL byte will increase ed Backlight Control value.	
			The SH byte defines whether operation should be performed as a white adjustment or as a red / green or blue backlight adjustment when these are separate light sources (e.g. LEDs)		
			those functions support the bit field with the a	MI bytes contain the flags corresponding to orted by the display. The SH-SL bytes contain appropriate bit set to indicate the current status	
			1 7	efines the SH byte, and the MH byte for read	
			Ryte: SH / MH	1	
			00 _h	A white adjustment	
			01 _h	A red adjustment	
			02 _h	A green adjustment	
				A blue adjustment	
				Reserved, must be ignored	
			actual adjustment ran	ent range $(0 \rightarrow 255)$ will be mapped to the ge defined by the display manufacturer. A ls to the lowest value and 255 the highest	
		Backlight R/W	Backlight R/W C	Backlight Control R/W C Caution: This VCP code has be leaded to be leaded to codes 6Bh 6Dh 6Fh and the codes of the codes of the specification (decrease) the specification (decrease) the specification of the code the code of the display. The following table doperations only. Byte: SH / MH Ough Ough Ough Ough Ough Ough Ough Oug	

Table 8-4: Image Adjustment VCP Codes

Code	Name	Type	Function	Description		
14 _h	Select Color Preset	R/W	NC Interactive with VCP 16 _h 18 _h 1A _h 6C _h 6E _h 70 _h 0B _h and	Select a specified color temperature. This is a 2 byte value, the MH byte defines the tolerance associated with any preset this is fixed by the display manufacturer. If no tolerance level is specified, the presets must be interpreted as relative values supporting a scale which can move to warmer (lower color temperature) or cooler (higher color temperature).		
			$0C_{\rm h}$.	Byte: MH]	
				00 _h	No tolerance is specifi	ed, treat as relative scale.
				01 _h	A tolerance of 1% is s	pecified
				02 _h	A tolerance of 2% is s	pecified
				03 _h	↓	
				$09_{\rm h}$	A tolerance of 9% is s	pecified
				$0A_h$	A tolerance of 10% is	specified
				≥ 0B _h	Reserved, must be igner	ored
				Byte: SL		
					If MH byte $\neq 00_h$	If MH byte = 00_h
				$00_{\rm h}$	Reserved, must be	Reserved, must be
					ignored	ignored
				01 _h	sRGB	sRGB
				02 _h	Display native	Display native Warmer
				$\frac{03_{\rm h}}{04_{\rm h}}$	4000° K 5000° K	w armer
					6500° K	
				05 _h	7500° K	
				06 _h	8200° K	
				07 _h		
				08 _h	9300° K	↓
				09 _h	10000° K 11500° K	Cooler
				$0A_h$ $0B_h$	User 1	
				$0C_h$	User 2	User 1 User 2
				$0D_h$	User 3	User 3
				≥ 0E _h	Reserved, must be ignored	Reserved, must be ignored
				temperature and Setting 14 _h to Us codes 0B _h and 00 register change r 18 _h 1A _h 6C _h 6E _h VCP 02 _h and 52 _h Example: A tolerance spec	tolerance associated with ser 1, 2, or 3, recalls value C_h . In addition all VCP required to match the column and 70_h . These changes	registers must reflect the or change. Consider 16 _h s must be reported using 9_h is selected then color

Table 8-4: Image Adjustment VCP Codes

Code	Name	Туре	Function	Description Description		
16 _h	Video Gain (Drive): Red	R/W	С	Increasing (decreasing) this value will increase (decrease) the luminance of red pixels.		
				The value returned must be an indication of the actual red gain at the current color temperature and not be normalized.		
17 _h	User Color Vision	R/W	С	Increasing (decreasing) this value will increase (decrease) the degree of compensation.		
	Compensation			<u>NOTE</u> : This is intended to help user suffering from the form of color deficiency in which red colors are poorly seen.		
18 _h	Video Gain (Drive): Green	R/W	С	Increasing (decreasing) this value will increase (decrease) the luminance of green pixels.		
				The value returned must be an indication of the actual green gain at the current color temperature and not be normalized.		
1A _h	Video Gain (Drive): Blue	R/W	С	Increasing (decreasing) this value will increase (decrease) the luminance of blue pixels.		
				The value returned must be an indication of the actual blue gain at the current color temperature and not be normalized.		
1C _h	Focus	R/W	С	Increasing (decreasing) this value will adjust the focus of the image.		
1E _h	Auto Setup	R/W	NC	Perform auto setup function (H/V position, clock, clock phase, A/D converter, etc.)		
				Byte: SL		
				00 _h Auto setup is not active		
				01 _h Perform / performing auto setup		
				02 _h Enable continuous / periodic auto setup		
				$\geq 03_h$ Reserved, must be ignored		
				NOTE: A value of '02 _h ' (when supported) must cause the display to either continuously or periodically (event or timer driven) perform an auto setup. Cancel by writing a value of either '01 _h ' or '00 _h '.		
1F _h	Auto Color Setup	R/W	NC	Perform auto color setup function (R / G / B gain and offset, A/D setup, etc.)		
				Byte: SL		
				00 _h Auto color setup is not active		
				01 _h Perform / performing auto color setup		
				02 _h Enable continuous / periodic auto color setup		
				$\geq 03_{\rm h}$ Reserved, must be ignored		
				NOTE: A value of '02 _h ' (when supported) must cause the display to		
				either continuously or periodically (event or timer driven) perform an auto color setup. Cancel by writing a value of either '01 _h ' or		
				'00h'.		

Table 8-4: Image Adjustment VCP Codes

Code	Name	Type	Function	Description			
2E _h	Gray Scale Expansion	R/W	NC	Expands the gra black region (or	y scale either in the near white region or the near both).		
				Byte: SH	Near white region		
				00 _h	No white region expansion		
				01 _h	First level of expansion		
				02 _h	Second level of expansion		
				03 _h	Third level of expansion		
				≥ 04 _h	Reserved, must be ignored		
				Byte: SL	Near black region		
				$00_{\rm h}$	No black region expansion		
				$01_{\rm h}$	First level of expansion		
				02 _h	Second level of expansion		
				$03_{\rm h}$	Third level of expansion		
				≥ 04 _h	Reserved, must be ignored		
3E _h	Clock Phase	R/W	С	Increasing (decr	easing) this value will increase (decrease) the phase bling clock.		
56 _h	Horizontal Moiré	R/W	С		Increasing (decreasing) this value controls the horizontal picture moiré cancellation.		
58 _h	Vertical Moiré	R/W	С	Increasing (decrease cancellation.	easing) this value controls the vertical picture moiré		
59 _h	6 Axis Saturation Control: Red	R/W	С	Adjust the red sa Byte: SL	aturation for 6-axis color		
				> 7F _h	Causes an increase in red saturation		
				$7F_{\rm h}$	The nominal (default) value		
				< 7F _h	Causes a decrease in red saturation		
				If set = $7F_h$ then of the incoming	display must make no change to the red saturation		
				If set \neq 7F _h , then	n writing a value = $7F_h$ must cause the display to a value (default) setting for red saturation.		
					must be linearly mapped to the actual adjustment		
5A _h	6 Axis Saturation	R/W	С		w saturation for 6-axis color		
	Control:			Byte: SL]		
	Yellow			> 7F _h	Causes an increase in yellow saturation		
				$7F_h$	The nominal (default) value		
				$<7F_{\rm h}$	Causes a decrease in yellow saturation		
				If set = $7F_h$ then	display must make no change to the yellow incoming signal.		
				If set \neq 7F _h , then	writing a value = $7F_h$ must cause the display to hinal (default) setting for yellow saturation.		
					must be linearly mapped to the actual adjustment		

Table 8-4: Image Adjustment VCP Codes

Code	Name	Type	Function	Description
5B _h	6 Axis Saturation Control: Green	R/W	С	Adjust the green saturation for 6-axis color Byte: SL
				> 7F _h Causes an increase in green saturation
				7F _h Causes an increase in green saturation 7F _h The nominal (default) value
				The Homman (detaunt) variety < 7F _h Causes a decrease in green saturation
				If set = $7F_h$ then display must make no change to the green
				saturation of the incoming signal.
				If set $\neq 7F_h$, then writing a value = $7F_h$ must cause the display to return to its nominal (default) setting for green saturation.
				The \pm 7F _h range must be linearly mapped to the actual adjustment range.
5C _h	6 Axis Saturation	R/W	С	Adjust the cyan saturation for 6-axis color
	Control: Cyan			Byte: SL
				> 7F _h Causes an increase in cyan saturation
				7F _h The nominal (default) value
				< 7F _h Causes a decrease in cyan saturation
				If set = $7F_h$ then display must make no change to the cyan saturation of the incoming signal.
				If set $\neq 7F_h$, then writing a value = $7F_h$ must cause the display to return to its nominal (default) setting for cyan saturation.
				The \pm 7F _h range must be linearly mapped to the actual adjustment range.
5D _h	6 Axis	R/W	С	Adjust the blue saturation for 6-axis color
	Saturation Control: Blue			Byte: SL
				> 7F _h Causes an increase in blue saturation
				7F _h The nominal (default) value
				< 7F _h Causes a decrease in blue saturation
				If set = $7F_h$ then display must make no change to the blue saturation of the incoming signal.
				If set $\neq 7F_h$, then writing a value = $7F_h$ must cause the display to return to its nominal (default) setting for blue saturation.
				The \pm 7F _h range must be linearly mapped to the actual adjustment range.

Table 8-4: Image Adjustment VCP Codes

C :	3 .7	Tr.		mage Adjustment VCP Codes		
Code	Name	Type	Function	Description		
5E _h	6 Axis Saturation Control: Magenta	R/W	C	Adjust the magenta saturation for 6-axis color		
6B _h	Backlight Level: White	R/W	С	Increasing (decreasing) this value will increase (decrease) the White backlight level of the image. NOTE: 1) The actual range of white backlight level over which this control applies is defined by the manufacturer. 2) Care should be taken to avoid the situation where the white backlight level ratio approaches 0 this may be non-recoverable since user will not be able to see the image.		
6C _h	Video Black Level: Red	R/W	С	Increasing (decreasing) this value will increase (decrease) the black level of the red video.		
6D _h	Backlight Level: Red	R/W	С	Increasing (decreasing) this value will increase (decrease) the Red backlight level of the image. NOTE: 1) The actual range of red backlight level over which this control applies is defined by the manufacturer. 2) Care should be taken to avoid the situation where the red backlight level ratio approaches 0 this may be non-recoverable since user will not be able to see the image.		
6E _h	Video Black Level: Green	R/W	С	Increasing (decreasing) this value will increase (decrease) the black level of the green video.		
6F _h	Backlight Level: Green	R/W	С	Increasing (decreasing) this value will increase (decrease) the Green backlight level of the image. NOTE: 1) The actual range of green backlight level over which this control applies is defined by the manufacturer. 2) Care should be taken to avoid the situation where the green backlight level ratio approaches 0 this may be non-recoverable since user will not be able to see the image.		
70 _h	Video Black Level: Blue	R/W	С	Increasing (decreasing) this value will increase (decrease) the black level of the blue video.		
71 _h	Backlight Level: Blue	R/W	С	level of the blue video. Increasing (decreasing) this value will increase (decrease) the Blue backlight level of the image. NOTE: 1) The actual range of blue backlight level over which this control applies is defined by the manufacturer. 2) Care should be taken to avoid the situation where the blue backlight level ratio approaches 0 this may be non-recoverable		

Table 8-4: Image Adjustment VCP Codes

Code	Name	Type	Function	Description		
				since user will n	ot be able to see the imag	ge.
72 _h	Gamma	R/W	NC	This VCP code has two distinct modes, it may be used to select an absolute (within a defined tolerance) value for gamma, or it may be used to select a value of gamma relative to the default gamma of the display. The SL byte defines whether the operation should be performed as a white adjustment or as a red / green or blue sub-channel adjustment or if the display should disable all gamma correction. Byte: SL		
				00 _h	A white absolute adjus	tment
				01 _h	A red absolute adjustm	
				02 _h	A green absolute adjus	
				03 _h	A blue absolute adjustr	
				04 _h	A white relative adjust	
				05 _h	Disable all gamma corr	
				$\geq 06_{\rm h}$	Reserved, must be igno	
	the three sub-channels m For absolute adjustmen The SH byte defines the The decimal value of the added to a base value of Examples: A value of 0 results in a A value of 120 results in Capability string forma The format of capability important, it must be in t absolute gamma adjustm 1st #: Accuracy of gamm		ten and blue sub-channel annels must be adjusted to all the light street that the light	adjustment capability then ogether. value as follows: is divided by 100 and then ear) {0/100+1=1} 0 {120/100+1=2.20} for this VCP is very mat for displays supporting centage of requested accuracy is equal to or		
				reserved. 2 nd #: The native decimal value as e.g. a native gan of 120 3 rd #: and above: 3 rd # FF _h		lisplay, expressed as the

Table 8-4: Image Adjustment VCP Codes

Code	Name	Type	Function	Description		
					gamma adjustment is supported AND display has ability to bypass gamma correction.	
				$\mathrm{FD}_{\mathtt{h}}$	Limited range of absolute gamma adjustment is supported	4 th and 5 th #'s define the lower and upper range limits respectively
				FCh	Limited range of absolute gamma adjustment is supported AND display has ability to bypass gamma correction.	4 th and 5 th #'s define the lower and upper range limits respectively
				FB_{h}	Specific absolute gamma preset(s) follow	4 th # and above are absolute gamma presets expressed as the decimal value associated with a particular gamma value
				FA_h	Specific absolute gamma preset(s) follow AND display has ability to bypass gamma correction.	4 th # and above are absolute gamma presets expressed as the decimal value associated with a particular gamma value
				\leq F9 _h	Reserved	
				gamma of 2.2 a at each preset of Example 2: 72(02 96 FE 50 of 2.5 and is cat to 2.6 with an a For relative ad The SL byte is	A0) indicates that the disp pable of adjusting the gam accuracy of ± 2%	play has a default gamma ma within the range of 1.8
				Byte: SH	1	
				00 _h	Display default gamma	
				01 _h	Default gamma – 0.1	
				02 _h	Default gamma – 0.2	
				09 _h	Default gamma – 0.9	
				$0A_{\rm h}$	Default gamma – 1.0	
				11 _h	Default gamma + 0.1	
				12 _h	Default gamma + 0.2	

Table 8-4: Image Adjustment VCP Codes

Code	Name	Type	Function	Description		
				19 _h	Default gamma + 0.9	
				$1A_h$	Default gamma + 1.0	
				$20_{\rm h}$	Disable all gamma corre	ection in the display.
				≥21 _h	Reserved, must be ignor	red
					apability string reporting fast be of the following form	For this VCP is very mat for displays supporting
				1^{st} #: Set = FF _h t	to specify relative adjustm	ent
				decimal value as e.g. a native gar of 120.	•	
				3 rd #:and above:		
				3 rd #	Definition of 3 rd #	4 th # & above
				FF _h	Full range of relative gamma adjustment is supported	Not applicable
				FE_{h}	Full range of relative gamma adjustment is supported AND display has ability to bypass gamma correction.	Not applicable
				$\mathrm{FD_h}$	Limited range of relative gamma adjustment is supported	4 th and 5 th #'s define the lower and upper range limits respectively. NOTE: Undefined values in range have no meaning and must be ignored.
				FCh	Limited range of relative gamma adjustment is supported AND display has ability to bypass gamma correction.	4 th and 5 th #'s define the lower and upper range limits respectively. NOTE: Undefined values in range have no meaning and must be ignored.
				FB_h	Specific relative gamma preset(s) follow	4 th # and above are relative gamma represented by the appropriate value for

Table 8-4: Image Adjustment VCP Codes

Code	Name	Туре	Function	Description	ient vCP Codes	
		7.5		P		the SL byte as defined
						above.
				FAh	Specific relative gamma preset(s) follow AND display has ability to bypass gamma correction.	4 th # and above are relative gamma represented by the appropriate value for the SL byte as defined above.
				≤ F9 _h	Reserved	ubove.
				Example 3: 72(FF 00 01 03	05 07 09 11 13 15 17 19)	indicates that the display $0.3, \pm 0.5, \pm 0.7$ and ± 0.9 .
				72(FF 01 FE 05 adjustments up	5 15) indicates that the disp to ± 0.5 in increments of 0).1
73 _h	LUT Size	RO	T		ze (number of entries and r n and Blue LUT in the disp	
				Byte	Definition	
				0 + 1	Number of Red LUT er	ntries
				2 + 3	Number of Green LUT	entries
				4 + 5	Number of Blue LUT e	ntries
				6	Number of bits / entry i	
				7	Number of bits / entry i	
				8	Number of bits / entry i	
				NOTE: Suppo commands 74 _h	ort for this command is a prand 75 _h .	rerequisite for support of
74 _h	Single Point LUT Operation	R/W	Т	to be loaded. NOTE: Only	e point within a display's c the offset called out in the DDC/CI table command o	header is used by
				Write Operati	on (E7 _b)	
				Byte	Definition	
				0	Value = 1 (write operat	ion)
				1 + 2	Offset into the LUT	
				3 + 4	Red LUT value to be lo	aded
				5 + 6	Green LUT value to be	loaded
				7 + 8	Blue LUT value to be le	oaded
					74 00 00 value(01) offset on nLUT blueLUT blueLUT	offset redLUT redLUT
				Read Operation	on Request (E7h)	
				Byte	Definition	
				0	Value = 2 (read operation	on)

Table 8-4: Image Adjustment VCP Codes

Code	Name	Type	Function	Description	
				1 + 2	Offset into the LUT
				Example E7 74 (00 00 value(02) offset offset
				Read Operation	Reply (Display reply)
				Byte	Definition
				0 + 1	Red LUT value read
				2 + 3	Green LUT value read
				4 + 5	Blue LUT value read
				NOTE: If display LUT cannot store 16 bit values then least significant bits must be discarded. Support of VCP 73 _h , LUT Size is a prerequisite for this VCP	

Table 8-4: Image Adjustment VCP Codes

~ -		_		linage Aujustine			
Code	Name	Type	Function	Description	Description		
75 _h	Block LUT Operation	R/W	T	Provides an efficiency display's LUT.	cient method for loading multiple values into a		
					ne offset called out in the header is used by DDC/CI table command offset must be set to zero.		
				Write Operatio	n (E7 ₆)		
				Byte	Definition		
				0	Value = 1 (write operation)		
				1	Red / Green or Blue LUT follows Value = 1 : Red LUT data Value = 2 : Green LUT data Value = 3 : Blue LUT data		
				2 + 3	Number of values to be read		
				4 + 5	Offset into Red or Green or Blue LUT		
				6 + 7	1 st R or G or B LUT value to be loaded		
				8 + 9	2 nd R or G or B LUT value to be loaded		
				10 + 11	3 rd R or G or B LUT value to be loaded		
				≥ 12	Etc.		
				Example: E7 74 offset data data d	4 00 00 value(01) RGBLUT #ofLUTvalues offset data		
				Read Operation			
				Byte	Definition		
				0	Value = 2 (read operation)		
				1	Red / Green or Blue LUT follow Value = 1 : Red LUT data Value = 2 : Green LUT data Value = 3 : Blue LUT data		
				2 + 3	Number of values to be read		
				4 + 5	Offset into Red or Green or Blue LUT		
				offset	4 00 00 value(02) RGBLUT #ofLUTvalues offset		
					n Reply (Display reply)		
				Byte	Definition		
				0+1	1 st Red or Green or Blue LUT contents 2 nd Red or Green or Blue LUT contents		
				2+3 $4+5$	3 rd Red or Green or Blue LUT contents		
				2 + 3 ≥ 6	Etc.		
				NOTE:	Lic.		
					cannot store 16 bit values then least significant bits		
					73 _h , LUT Size, is a prerequisite for this VCP		
7C _h	Adjust Zoom	R/W	С	Increasing (decreasing) this value will increase (decrease) the zoom function of the projection lens.			
87 _h	Sharpness	R/W	С		Allows one of a range of algorithms to be selected to suit the type of image being displayed and/or personal preference.		

Table 8-4: Image Adjustment VCP Codes

Code	increase (decrease) the scan as a function of a change inplitude of the color inputs. In of pure color relative to est to the currently active inplitude of the high frequency ited. This control does not eo inputs. In order to the currently active inputs inputs inputs inputs inputs in order to the currently input inputs inputs inputs in order to the currently input inp		
Sharpness of image features.	increase (decrease) the scan as a function of a change inplitude of the color inputs. In of pure color relative to est to the currently active inplitude of the high frequency ited. This control does not eo inputs. In order to the currently active inputs inputs inputs inputs inputs in order to the currently input inputs inputs inputs in order to the currently input inp		
Modulation Modulation Nodulation Nodula	mplitude of the color gnal. To f pure color relative to est to the currently active mplitude of the high frequency ted. This control does not eo inputs. creases (decreases) the ratio		
Saturation Gifference components of the video sign of the video signal. Saturation Gifference components of the video signal. The result is an increase in the amount white in the video. This control applies interface. SCh TV-Sharpness R/W C Increasing this control increases the and components of the video signal.	gnal. Tof pure color relative to est to the currently active enplitude of the high frequency ted. This control does not eo inputs. Bereases (decreases) the ratio		
white in the video. This control applies interface. 8Ch TV-Sharpness R/W C Increasing this control increases the an components of the video signal.	es to the currently active mplitude of the high frequency ted. This control does not eo inputs. creases (decreases) the ratio		
components of the video signal.	ted. This control does not eo inputs.		
This allows fine details to be accentual	eo inputs. creases (decreases) the ratio		
affect the RGB input, only the TV vide			
8E _h TV-Contrast R/W C Increasing (decreasing) this control included between whites and blacks in the video	Э.		
This control does not affect the RGB in inputs.	nput, only the TV video		
90 _h Hue R/W C Also known as 'tint'			
Increasing (decreasing) this control inc wavelength of the color component of			
	The result is a shift towards red (blue) in the hue of all colors. This control applies to the currently active interface.		
	Increasing this control increases the black level of the video, resulting in an increase of the luminance level of the video.		
Luminance A value of zero represents the darkest	-		
This control does not affect the RGB in inputs.	This control does not affect the RGB input, only the TV video inputs.		
9A _h Window R/W C Changes the contrast ratio between the rest of the desktop	e area of the window and the		
Lower (higher) values will cause the d (increase)	esktop luminance to decrease		
NOTE:			
1. This VCP code should be used in co 2. This command structure is not reco			
9B _h 6 Axis Hue R/W C Adjust the red hue for 6-axis color			
Control: Red Ryte: SL			
Byte. SE	n rad hua		
$>7F_h$ Causes an increase i $7F_h$ The nominal (defaul			
< 7F _h Causes a decrease in			
If set = 7F _h then display must make no incoming signal.	-		
If set \neq 7F _h , then writing a value = 7F _h return to its nominal (default) setting for			
The $\pm 7F_h$ range must be linearly mapper range.			

Table 8-4: Image Adjustment VCP Codes

	Table 8-4: Image Adjustment VCP Codes					
Code	Name	Type	Function	Description		
9C _h	6 Axis Hue Control:	R/W	С	Adjust the yellow hue for 6-axis color		
	Yellow			Byte: SL		
				> 7F _h Causes an increase in yellow hue		
				7F _h The nominal (default) value		
				< 7F _h Causes a decrease in yellow hue		
				If set = $7F_h$ then display must make no change to the yellow hue of the incoming signal.		
				If set $\neq 7F_h$, then writing a value = $7F_h$ must cause the display to return to its nominal (default) setting for yellow hue.		
				The \pm 7F _h range must be linearly mapped to the actual adjustment range.		
9D _h	6 Axis Hue Control: Green	R/W	С	Adjust the green hue for 6-axis color		
				Byte: SL		
				> 7F _h Causes an increase in green hue		
				7F _h The nominal (default) value		
				< 7F _h Causes a decrease in green hue		
				If set = $7F_h$ then display must make no change to the green hue of the incoming signal.		
				If set $\neq 7F_h$, then writing a value = $7F_h$ must cause the display to return to its nominal (default) setting for green hue.		
				The \pm 7F _h range must be linearly mapped to the actual adjustment range.		
9E _h	6 Axis Hue Control: Cyan	R/W	С	Adjust the cyan hue for 6-axis color		
				Byte: SL		
				> 7F _h Causes an increase in cyan hue		
				7F _h The nominal (default) value		
				< 7F _h Causes a decrease in cyan hue		
				If set = $7F_h$ then display must make no change to the cyan hue of the incoming signal.		
				If set \neq 7F _h , then writing a value = 7F _h must cause the display to return to its nominal (default) setting for cyan hue.		
				The \pm 7F _h range must be linearly mapped to the actual adjustment range.		
9F _h	6 Axis Hue Control:	R/W	С	Adjust the blue hue for 6-axis color		
	Blue			Byte: SL		
				> 7F _h Causes an increase in blue hue		
				7F _h The nominal (default) value		
				< 7F _h Causes a decrease in blue hue		
				If set = $7F_h$ then display must make no change to the blue hue of the incoming signal.		
				If set $\neq 7F_h$, then writing a value = $7F_h$ must cause the display to return to its nominal (default) setting for blue hue.		

Table 8-4: Image Adjustment VCP Codes

Code	Name	Type	Function	Description		
				The \pm 7F _h range must be linearly mapped to the actual adjustment range.		
A0 _h	6 Axis Hue Control: Magenta	R/W	C	Adjust the magenta hue for 6-axis color		
A2 _h	Auto Setup On / Off	WO	NC	Turn on / off the auto setup function (periodic or event driven). Byte: SL 00_h Reserved, must be ignored 01_h Turn auto setup "off" 02_h Turn auto setup 'on' $\geq 03_h$ Reserved, must be ignored		
A4 _h	Window Mask Control	R/W	T	 Data size: Write / Read = 10 bytes This code has two sets of functions: To retain compatibility with applications using VCP codes 95h → 98h to set the (x,y) coordinates of a window. Provide a way to set all the window coordinates simultaneously – this is recommended for new designs. For legacy operations: The bits of byte 0 allow each window to be masked from the user e.g. while it is being resized. The bits of byte 1 allow each window to be turned to an active or inactive state note that only an active window will be visible to the user, assuming it has not been masked. For new implementations: Byte 2 and 3 provide the top left x coordinate of the window. Byte 4 and 5 provide the top left y coordinate of the window. Byte 6 and 7 provide the bottom right x coordinate of the window. Byte 8 and 9 provide the bottom right y coordinate of the window. 		

Table 8-4: Image Adjustment VCP Codes

Code	Name	Туре	Function	Description			
Code	Name	Туре	Function	Description	11		
				Byte 0			
				Bit 0	Set = 0	Window controls have no effect on the displayed image.	
					Set = 1	Window controls affect the displayed image (full image area)	
				Bit 1	Set = 0	Window controls have no effect on the displayed image (window 1)	
					Set = 1	Window controls affect the displayed image (window 1)	
					\downarrow	↓	
				Bit 7	Set = 0	Window controls have no effect on the displayed image (window 7)	
					Set = 1	Window controls affect the displayed image (window 7)	
				Byte 1			
				Bit 0	Set = 0	Reserved, do not use	
				Bit 1	Set = 0	Window # 1 is inactive	
					Set = 1	Window # 1 is active	
						↓	
				Bit 7	Set = 0	Window # 7 is inactive	
					Set = 1	Window # 7 is active	
				Byte 2		High order bits of top left x coordinate	
				Byte 3		Low order bits of top left x coordinate	
				Byte 4		High order bits of top left y coordinate	
				Byte 5		Low order bits of top left y coordinate	
				Byte 6		High order bits of bottom right x coordinate	
				Byte 7		Low order bits of bottom right x coordinate	
				Byte 8		High order bits of bottom right y coordinate	
				Byte 9		Low order bits of bottom right y coordinate	
						d structure is recommended, in conjunction new designs.	

Table 8-4: Image Adjustment VCP Codes

Code	Name	Type	Function	Description	
A5 _h	Window Select	R/W	С	Change the selected window (as defined by $95_h - 98_h$). When a window is selected then all commands that the display	
					rts for window operations are valid, this may t limited to: luminance, contrast, R/G/B gain, 6-ness. etc.
				Byte: SL	
				00 _h	Full display image area is selected except for area(s) of active windows
				01 _h	Window 1 is selected
				02 _h	Window 2 is selected
				03 _h	Window 3 is selected
				04 _h	Window 4 is selected
				05 _h	Window 5 is selected
				06 _h	Window 6 is selected
				07 _h	Window 7 is selected
				$\geq 08_{\rm h}$	Reserved, must be ignored
				NOTE: If this command is not supported then the 'full image area' must be the default.	
				This command structure is recommended, in conjunction with VCP A4 _h , for all new designs.	
				The last window displayed image.	to be addressed is assumed to the top 'layer' of the

Table 8-4: Image Adjustment VCP Codes

Codo	Nama	Typo	Function	Description		
Code	Name	Type		Description		
A6 _h	Window Size	R/W	С	Increasing (decreasing) this value will increase (decrease) the size of the window called out by VCP $A5_h$.		
				Byte: SL		
				00 _h Min "default"		
				$00_h \le Max$ Control Range		
				$Max \le FF_h$ Value returned in	Ca String	
				All operations handling aspect ratio size will be handled by the scalar.	of the window when changing	
				This VCP code must update the coordinates of the window. For implementations that support 95 _h -98 _h , the x:y coordinates of the upper right and lower left coordinates are updated for synchronization.		
				For implementations that support the x:y coordinate as part of A4 _h Window Mask Control, the x:y coordinates are updated byte 2 and 3 (top left x coordinate), byte 4 and 5 (top left y coordinate), byte 6 and 7 (bottom right x coordinate) and byte 8 an 9 (bottom right y coordinate).		
				Window capabilities will be called out in the capability string to provide size, safe area restrictions, type of window (PIP or Zone) with an entry for each window supported. The format for the capability string is:		
				Window # - Window number with associated requirements Type – PIP, Zone Area - Absolute value for bounded safe area of the window Max – Maximum size of the window Min – Minimum size of the window.		
				NOTE:		
				As part of 3.0 window () specifies the VCP codes that are supported within a window. This could be added to each window # to provide exact information as to the feature set for any given window supported through hardware.		
				Example:		
				Window 1(type(pip) area(25 25 18 10) window(XX XX XX))	95 1175) max(640 480) min(10	
				Where XX = supported VCP codes.		
A7 _h	Window Transparency	R/W	С	Increasing (decreasing) this value will increase (decrease) the transparency of the window called out by A5 _h .		
				D . CV		
				Byte: SL	C. 1422	
				00 _h Fully opaque "de		
				$01_h \rightarrow FF_h$ Increasing transparents	arent	

Table 8-4: Image Adjustment VCP Codes

Code	Name	Type	Function	Description		
AA _h	Screen Orientation	RO	NC	Indicates the orie	entation of the scr	een.
				00 _h	Reserved	Shall be ignored
				01 _h	0 degrees	The normal landscape mode
				02 _h	90 degrees	Portrait mode achieved by clockwise rotatio of the display 90 degrees.
				03 _h	180 degrees	Landscape mode achieved by rotation of the display 180 degrees.
				04 _h	270 degrees	Portrait mode achieved by clockwise rotation of the display 270 degrees.
				$05_h \rightarrow FE_h$	Reserved	Shall be ignored
				FF_h	Not applicable	Indicates that the display cannot supply the current orientation
				NOTE: "Clockw viewpoint.	vise rotation" whe	en viewing the display from user's
D4 _h	Stereo Video Mode	R/W	NC		e video mode witl	h respect to 2D or 3D video.
				Byte: SL		
				Bit 7	Reserved, must	
				Bit 6		quential Right Eye First
				Bit 5		quential Left Eye First
				Bit 4	•	nterleaved Right Eye First
				Bit 3 Bit 2	· ·	nterleaved Left Eye First nterleaved, Display Stereo
				Bit 2	Buffer 0 (even s	
				Bit 1	\	nterleaved, Display Stereo
				Bit 0	Enable Side-by-	Side Interleaved
						read operation, for a display to
				indicate support	for 2 or more ster	eo modes.

Table 8-4: Image Adjustment VCP Codes

Code	Name	Type	Function	Description		
DCh	Display Application	R/W	NC		ction of a preset optimized by manufacturer for an or the selection of a user defined setting.	
				Byte: SL		
				$00_{\rm h}$	Stand / default mode	
				01 _h	Productivity (e.g. office applications)	
				02 _h	Mixed (e.g. internet with mix of text and images)	
				03 _h	Movie	
				$04_{\rm h}$	User defined	
				05 _h	Games (e.g. games console / PC game)	
				$06_{\rm h}$	Sports (e.g. fast action)	
				07 _h	Professional (all signal processing disabled)	
				08 _h	Standard / default mode with intermediate power consumption	
				09 _h	Standard / default mode with low power consumption	
				$0A_h$	Demonstration (used for high visual impact in retail etc.)	
				$0B_h$ - EF_h	Reserved, must be ignored	
				$F0_h$	Dynamic contrast	
				$\geq F1_h$	Reserved, must be ignored	
				NOTE : The condition(s) associated with options $00_h \rightarrow 0A_h$		
					efined by the display manufacturer and may include	
				all or some of lu	minance, contrast, gamma settings, etc.	

8.3 Display Control VCP Codes

Table 8-5: Display Control VCP Code Cross-Reference

VCP Code Name	Code	Compliance
Display Controller ID	C8 _h	10.11
Display Firmware Level	C9 _h	10.11
Display Usage Time	C6 _h	10.11
Horizontal Frequency	AC_h	10.11
Image Mode	DB_{h}	10.7
OSD / Button Event Control	CA_h	10.7
OSD Language	CC_h	10.7
Power Mode	$D6_h$	10.7
Source Color Coding	$\mathrm{B5}_{\mathrm{h}}$	10.11.4
Source Timing Mode	B4 _h	10.12.2
VCP Version	$\mathrm{DF_{h}}$	10.11
Vertical Frequency	AE_h	10.11

8.3.1 Source Timing Mode

This VCP declares the video timing that will next be sent to the display using either a new declared video input or a change to the current video timing. This value must be set prior to any change to the video timing either by changing the video input VCP 60_h or the current timing on the current input. The display can use this information to speed up the re-synchronization process when the timing actually changes.

Typical Usage of VCP B4_h, 8D_h, AC_h and AE_h:

When changing the video timing sent to the display it is recommended to use these VCP codes to make a "clean" timing change with no visible artifacts on the screen.

Use VCP 8D_h to mute audio and blank the Screen.

Use VCP B4_h to notify the display controller of the pending timing change.

Change the video timing.

Read VCP ACh and AEh to determine the display is in sink and at the right frequencies.

Use VCP 8D_h to un-Mute and un-Blank the display.

Some displays may not support "out of sync" indication using VCP AC_h and AE_h. Step 4 may be omitted. However the display may not un-blank immediately upon issuing an un-blank VCP 8D_h, but only after it has fully synchronized to the new input signal.

There are two major industries that have defined video timings in use today. The first described here is the PC industry, defined by VESA. The second is the consumer electronics industry, defined by CEA. The major difference between these two is that timings used by the PC industry represent the timing designed to best drive a particular display technology, and timings used by the consumer electronics industry are designed for the transport of video over the national broadcast system.

This VCP lists the current DMT and CEA DTV timings available at the creation of this document. These lists show usage convention only and may not be current; it is highly recommended that the reader refer to the respective standard for the most up to date listings.

This VCP does NOT indicate preferred timing. It only allows a host to declare the video timing before a change is made.

This VCP also provides for declaring video timings using the CVT three-byte codes defined in the VESA CVT Standard.

NOTE:

- Certain Display Interfaces, i.e. DisplayPort, manage access to MCCS using the hosts' GPU
 display driver; it is highly recommended that the display driver manage all video timing
 changes using the procedure described above on behave of the application requesting the
 timing change.
- A third category of timing, that we will just mention here, is the timing used generating the original video stream. For example a movie filmed at 24 frames per second in a cinematic aspect ratio sampled at a certain resolution. In certain applications it would be nice to have this information when receiving this signal. This VCP does NOT address this use.

Table 8-6: Source Timing Mode

Code	Name	Туре	Function	Source Till	Description	ı	
B4 _h	Source	R/W	Т	Indicates the tin	Indicates the timing mode being sent by the host.		
DTh	Timing	IX/ VV	1		has a 5 byte data structur		
	Mode				DMT timing modes		
				,	CEA DTV timing mod	es	
					T descriptor bytes		
				NOTE:	1 2		
				Only one Timin		ed, any combination with ied is invalid and must be	
						nd 4 shall be declared and	
					her than 00_h at any singl		
				'RB' in following table indicates 'reduced blanking' as defined by the VESA CVT standard			
				The aspect ratio (AR) identified in the following table is the			
				physical aspect ratio of the image.			
				The DMT codes listed here may not be up to date. Refer to the most current DMT standard for current codes.			
				Byte 0	Pixel Format	Refresh Rate	
				00 _h	PC Timing is not declar	red	
				01 _h	640 x 350	85 Hz	
				02 _h	640 x 400	85 Hz	
				$03_{\rm h}$	720 x 400	85 Hz	
				04 _h	640 x 480	60 Hz	
				05 _h		72 Hz	
				06 _h		75 Hz	
				$07_{\rm h}$		85 Hz	
				08 _h	800 x 600	56 Hz	
				09 _h		60 Hz	
				$0A_h$		72 Hz	
				$0B_h$		75 Hz	
				OC _h		85 Hz	
				$0D_h$	0.40	120 Hz (RB)	
				0E _h	848 x 480	60 Hz	
	Ì			$0F_h$	1024 x 768	43 Hz (Int.)	

11h					
12 ₀			$10_{\rm h}$		60 Hz
13a			11 _h		70 Hz
13a			12 _h		75 Hz
14h					
15h					
16h				1152 x 864	
17h					
18h				1200 X 700	
19h					
1A _h					
1Bh					
1Ch					
TDh			$1B_h$	1280 x 800	
1Eh			1C _h		60 Hz
1Fh 120 Hz (RB) 20h 21h 85 Hz 120 Hz (RB) 22h 85 Hz 120 Hz (RB) 23h 1280 x 1024 60 Hz 75 Hz 25h 85 Hz 120 Hz (RB) 26h 120 Hz (RB) 28h 120 Hz (RB) 60 Hz 28h 120 Hz (RB) 60 Hz 28h 220h 240 Hz (RB) 60 Hz 28h 220h 240 Hz (RB) 60 Hz 28h 25 Hz 200h 25 Hz 25			$1D_h$		75 Hz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$1E_h$		85 Hz
21h			1F _h		120 Hz (RB)
21h			20 _h	1280 x 960	
120 Hz (RB) 1280 x 1024 60 Hz 75 Hz 85 Hz 120 Hz (RB) 120					85 Hz
1280 x 1024 60 Hz 75 Hz 88 Hz 120 Hz (RB) 120					
24h				1280 x 1024	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1200 X 1024	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1260 760	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1360 x 768	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1400 x 1050	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$2A_h$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$2B_h$		75 Hz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2C _h		85 Hz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$2D_h$		120 Hz (RB)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$2E_h$	1440 x 900	60 Hz (RB)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2F _h		60 Hz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1600 x 1200	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1000 X 1200	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c c} 3A_h & 60 \text{ Hz} \\ 3B_h & 75 \text{ Hz} \\ 3C_h & 85 \text{ Hz} \\ 3D_h & 120 \text{ Hz} \text{ (RB)} \\ \end{array} $					
$ \begin{array}{c c} 3B_h & 75 \text{ Hz} \\ \hline 3C_h & 85 \text{ Hz} \\ \hline 3D_h & 120 \text{ Hz} \text{ (RB)} \\ \end{array} $				1680 x 1050	
3C _h 85 Hz 120 Hz (RB)					
3D _h 120 Hz (RB)			$3B_h$		75 Hz
			3C _h		85 Hz
3E _h 1792 x 1344 60 Hz			$3D_h$		120 Hz (RB)
			$3E_h$	1792 x 1344	60 Hz

$3F_h$		75 Hz
$40_{\rm h}$		120 Hz (RB)
41 _h	1856 x 1392	60 Hz
42 _h		75 Hz
43 _h		120 Hz (RB)
44 _h	1920 x 1200	60 Hz (RB)
45 _h		60 Hz
46 _h		75 Hz
47 _h		85 Hz
48 _h		120 Hz (RB)
49 _h	1920 x 1440	60 Hz
$4A_h$		75 Hz
$4B_h$		120 Hz (RB)
4C _h	2560 x 1600	60 Hz (RB)
$4D_h$		60 Hz
4E _h		75 Hz
4F _h		85 Hz
$50_{\rm h}$		120 Hz (RB)
51 _h	1366 x 768	60 Hz
52 _h	1920 x 1080	60 Hz
53 _h	1600 x 900	60 Hz (RB)
54 _h	2048 x 1152	60 Hz (RB)
55 _h	1280 x 720	60 Hz
56 _h	1366 x 768	60 Hz (RB)
≥ 57 _h	Reserved	

Byte 1	
$00_{\rm h}$	No timing declared
$01_h \rightarrow FF_h$	See CEA DTV Timing code below

The following describes the contents of the 3-byte CVT descriptor, this is correct at the time of writing but for complete description and to verify accuracy the user should verify using the latest revision of the VESA VTB-EXT standard.

If the CVT descriptor is not being used then the three bytes must be set to $00_{\text{h}}.$

Byte 2	
Bits $7 \rightarrow 0$	The lower 8 bits of VSize
	VSize = $(\# \text{ of vertical active lines } / 2) - 1)$

Byte 3	
Bits $7 \rightarrow 4$	The upper 4 bits of VSize
Bits $3 \rightarrow 2$	Aspect ratio
	00: 4:3
	01 : 16:9
	10 : 16:10
	11 : Reserved

	Bits $1 \rightarrow 0$	Reserved, set to 00
	Byte 4	
	Bit 7	Reserved, set to 0
	Bits $6 \rightarrow 5$	Preferred refresh rate 00: 50 Hz 01: 60 Hz 10: 75 Hz 11: 85 Hz NOTE: 60Hz may indicate either standard or reduced blanking. If both are supported then reduced blanking is preferred.
	Bits $4 \rightarrow 0$	Supported refresh rates (standard blanking unless otherwise stated)
		Bit 4 set to 1:50 Hz supported Bit 3 set to 1:60 Hz supported, Bit 2 set to 1:75 Hz supported Bit 1 set to 1:85 Hz supported Bit 0 set to 1:60 Hz reduced blanking (per CVT standard) is supported

Table 8-7: CEA DTV Timing Codes

Byte 1	CEA VID	Image Format	Field Rate	Image Aspect Ratio (H:V)
$00_{\rm h}$	CEA Timi	ng is not declared		
01 _h	1	640 x 480 p	59.94 Hz/ 60 Hz	4:3
02 _h	2	720 x 480 p	59.94 Hz/ 60 Hz	4:3
03 _h	3	720 x 480 p	59.94 Hz/ 60 Hz	16:9
04 _h	4	1280 x 720 p	59.94 Hz/ 60 Hz	16:9
05 _h	5	1920 x 1080 i	59.94 Hz/ 60 Hz	16:9
06 _h	6	720(1440) x 480 i	59.94 Hz/ 60 Hz	4:3
07 _h	7	720(1440) x 480 i	59.94 Hz/ 60 Hz	16:9
08 _h	8	720(1440) x 240 p	59.94 Hz/ 60 Hz	4:3
09 _h	9	720(1440) x 240 p	59.94 Hz/ 60 Hz	16:9
$0A_h$	10	2880 x 480 i	59.94 Hz/ 60 Hz	4:3
$0B_h$	11	2880 x 480 i	59.94 Hz/ 60 Hz	16:9
$0C_h$	12	2880 x 240 p	59.94 Hz/ 60 Hz	4:3
$0D_h$	13	2880 x 240 p	59.94 Hz/ 60 Hz	16:9
0E _h	14	1440 x 480 p	59.94 Hz/ 60 Hz	4:3
0F _h	15	1440 x 480 p	59.94 Hz/ 60 Hz	16:9
10 _h	16	1920 x 1080 p	59.94 Hz/ 60 Hz	16:9
11 _h	17	720 x 576 p	50 Hz	4:3
12 _h	18	720 x 576 p	50 Hz	16:9
13 _h	19	1280 x 720 p	50 Hz	16:9
14 _h	20	1920 x 1080 i	50 Hz	16:9
15 _h	21	720(1440) x 576 i	50 Hz	4:3
16 _h	22	720(1440) x 576 i	50 Hz	16:9
17 _h	23	720(1440) x 288 p	50 Hz	4:3
18 _h	24	720(1440) x 288 p	50 Hz	16:9
19 _h	25	2880 x 576 i	50 Hz	4:3
$1A_h$	26	2880 x 576 i	50 Hz	16:9
$1B_h$	27	2880 x 288 p	50 Hz	4:3
1C _h	28	2880 x 288 p	50 Hz	16:9
$1D_h$	29	1440 x 576 p	50 Hz	4:3
1E _h	30	1440 x 576 p	50 Hz	16:9
1F _h	31	1920 x 1080 p	50 Hz	16:9
20 _h	32	1920 x 1080 p	23.97 Hz/ 24 Hz	16:9
21 _h	33	1920 x 1080 p	25Hz	16:9
22 _h	34	1920 x 1080 p	29.97 Hz/ 30 Hz	16:9
23 _h	35	2880 x 480 p	59.94 Hz/ 60 Hz	4:3
24 _h	36	2880 x 480 p	59.94 Hz/ 60 Hz	16:9
25 _h	37	2880 x 576 p	50 Hz	4:3
26 _h	38	2880 x 576 p	50 Hz	16:9
27 _h	39	1920 x 1080 i	50 Hz	16:9
28 _h	40	1920 x 1080 i	100 Hz	16:9

Table 8-7: CEA DTV Timing Codes

Byte 1	CEA VID	Image I	Form	at	Field Rate	Image Aspect Ratio (H:V)
29 _h	41	1280	X	720 p	100 Hz	16:9
$2A_h$	42	720	X	576 p	100 Hz	4:3
$2B_h$	43	720	X	576 p	100 Hz	16:9
$2C_h$	44	720(1440)	X	576 i	100 Hz	4:3
$2D_h$	45	720(1440)	X	576 i	100 Hz	16:9
$2E_h$	46	1920	X	1080 i	119.88 Hz/ 120 Hz	16:9
2F _h	47	1280	X	720 p	119.88 Hz/ 120 Hz	16:9
$30_{\rm h}$	48	720	X	480 p	119.88 Hz/ 120 Hz	4:3
31 _h	49	720	X	480 p	119.88 Hz/ 120 Hz	16:9
32 _h	50	720(1440)	X	480 i	119.88 Hz/ 120 Hz	4:3
33 _h	51	720(1440)	X	480 i	119.88 Hz/ 120 Hz	16:9
34 _h	52	720	X	576 p	200 Hz	4:3
35 _h	53	720	X	576 p	200 Hz	16:9
36 _h	54	720(1440)	X	576 i	200 Hz	4:3
37 _h	55	720(1440)	X	576 i	200 Hz	16:9
38 _h	56	720	X	480 p	239.76 Hz/ 240 Hz	4:3
39 _h	57	720	X	480 p	239.76 Hz/ 240 Hz	16:9
3A _h	58	720(1440)	X	480 i	239.76 Hz/ 240 Hz	4:3
$3B_h$	59	720(1440)	X	480 i	239.76 Hz/ 240 Hz	16:9
3C _h	60	1280	X	720 p	23.97 Hz/ 24 Hz	16:9
3D _h	61	1280	X	720 p	25 Hz	16:9
$3E_h$	62	1280	X	720 p	29.97 Hz/ 30 Hz	16:9
$3F_h$	63	1920	X	1080 p	119.88 Hz/ 120 Hz	16:9
$40_{\rm h}$	64	1920	X	1080 p	100 Hz	16:9
$\geq 41_h$	65 - 127	Reserved				

8.3.2 OSD / Button Event Control

A new feature added to V3.0 and expanded in V2.2.

Table 8-8: OSD / Button Event Control

Code	Name	Type	Function	Description			
CA _h	OSD / Button	R/W	NC	buttons.	tes the current operational state of the display OSD and		
	Control			Byte: SL			
				00_{h}	Indicates that the display does not support Host control of its OSD and may NOT report button "events"		
				01 _h	Sink OSD & display control disabled, soft and predefined button "Host OSD" events enabled using (VCP 02h/52h/03h)		
				02 _h	Sink OSD & display control enabled if supported, soft and predefined button "Host OSD" events enabled using (VCP 02 _h /52 _h /03 _h)		
				03 _h	Sink OSD & display control disabled, soft and predefined buttons "Host OSD" events disabled		
				FF _h	Indicates that the display cannot supply this information		
				Byte: SH			
				$00_{ m h}$	Indicates that the display does not support Host control of its Power function and may NOT report Power "events"		
				01 _h	Power button disabled, power button events enabled using (VCP 02h/52h/03h)		
				02 _h	Power button enabled, power button events enabled using (VCP 02 _h /52 _h /03 _h)		
				03 _h	Power button disabled, power button events disabled		
				Bytes: ML, MH			
				$00_{\rm h}$	All other values reserved		
					A _h can be implemented for OSD-less displays, e.g. or buttons control only.		
				· ·	ssigned values are reserved and must be ignored.		

Button Event Handling Description

VCP 02_h / 52_h (and DP HPD interrupt) provide button "event" notifications

The Sink shall store 03_h in the 16 Byte VCP 52_h "event" FIFO for every button "event", make / break (press / release)

The Sink shall store the "event" code in the VCP 03_h FIFO until there is only one byte left FF_h indicates the FIFO was been overrun

- The 03_h FIFO must be designed such that when there are no more bytes available to store event codes, a FF_h will be inserted before additional event codes when the FIFO can take new data
- Only one FF_h will be written when the FIFO has room for new event codes including the FF_h
- The FIFO should not be filled with overrun codes
- o Host/sink synchronization has been broken if a FF_h is read from 03_h
- \circ The host must take steps to re-synchronize with the sink before reading 03_h again 00_h indicates the FIFO is empty
 - o A code of 00_h should be read (returned) when the FIFO is "empty

Button events must be managed in accordance with the following VCP CA_h rules:

- SL 00_h: Indicates that the display does not support Host control of its OSD and may not report button "events"
 - The host must not try to control the OSD function
 - The host must not act on button "events" in VCP 52_h
- SL 01_h: Sink OSD & display control disabled,

soft and predefined button "Host OSD" events enabled using (VCP 02h/52h/03h)

- o All button "events" reported!
- o Host must provide all OSD functions including a GUI.
- SL 02_h: Sink OSD & display control enabled if supported,

soft and predefined button "Host OSD" events enabled using (VCP $02_h/52_h/03_h$)

- o Only button "events" not supported by the Sink OSD are reported!
- o All VCP register value changes, as a result of the Sink OSD, are to be reported using (VCP 02_h/52_h/) with the appropriate VCP register code
- o Host must respond as required but not provide a GUI in most cases
- SL 03_h: Sink OSD & display control disabled,

soft and predefined buttons "Host OSD" events disabled

- o No button "events" reported
- Host response is required
- SL FF_h: Indicates that the display cannot supply this information
 - o The display may or may not write button codes to VCP 03_h
 - o The Host must not act on the button codes found in VCP 03_h
- SH 00_h: Indicates that the display does not support Host control of its Power function and may not report Power button "events"
 - The Host must not try to control the Power function
 - o The Host must not act on Power button "events" in VCP 52_h
- SH 01_h: Power button disabled,

power button events enabled using (VCP 02h/52h/03h)

- o Power button "events" reported
- SH 02_h: Power button enabled,

power button events enabled using (VCP 02_h/52_h/03_h)

- o Power button "events" reported
- o Host may track "events" but must not adjust power on the display.

SH 03_h: Power button disabled,

power button events disabled

- o No Power button "events" reported
- No host response is required

VCP CA_h can be implemented for OSD-less displays, e.g. DDM, for button control only There is a 1 to 1 relation of event codes in the VCP 03_h FIFO to 03_h events in the VCP 52_h FIFO Button make codes are not repeated at any rate when a button is held down - there is only a single make and a single break event recorded in the VCP 03_h FIFO

The Sink OSD may elect to use auto repeat as part of its functioning – VCP registers will be updated and reported as the repeat occurs – No button "events" are reported from buttons used by an active Sink OSD

Reading VCP 03_h automatically removes button's code from the FIFO, 00_h is returned when the FIFO is empty

Button's make code = button's code

Button's break code = button's code ORed with 80_h

Reporting Buttons Capabilities

Button events support is reported in the MCCS capabilities string under VCP abbreviation Button events support cap contains VCP 03_h followed by a list of supported button codes

e.g. Soft button 1, Power, Brightness Up, Brightness Down

...VCP(02 04 10 03(01 10 11 12)...)...

Supplied list of supported button codes implies VCP 03_h FIFO support and predefined buttons extensions

Listing VCP 03_h without a list of supported button codes implies legacy implementation of VCP 03_h without 03_h FIFO support and without predefined buttons extensions

Other

A 03_h 'button active' value should only be reset to 00_h by host write operation in sinks using MCCS versions earlier than this revision MCCS 3.1.

From this version forward, 03_h is "read-only" and the sink will return a 00_h to the host when the FIFO is empty.

Table 8-9: Display Control VCP Codes

	Table 8-9: Display Control VCP Codes						
Code	Name	Type	Function	Description			
ACh	Horizontal Frequency	RO	С	Horizontal synchronization signal frequency in Hz as determined by the display. $ \begin{aligned} MH &= ML = SH = SL = 00_h \text{: Indicates that the display is NOT} \\ synchronized to the video input signal. \\ MH &= ML = SH = SL = FF_h \text{: Indicates that the display cannot synchronize} \\ or has determined the input frequency is out of range. \\ Example: \\ A reported value of 01_h, 21_h, 10_h indicates a Hz frequency of 74.0KHz (nominal for 1920 x 1200 @ 60Hz reduced blanking)$			
AE _h	Vertical Frequency	RO	С	Vertical synchronization signal frequency in 0.01Hz as determined by the display. MH = ML = SH = SL = 00 _h : Indicates that the display is NOT synchronized to the video input signal. MH = ML = SH = SL = FF _h : Indicates that the display cannot synchronize or has determined the input frequency is out of range. Example: A reported value of 17 _h , 7A _h indicates a Hz frequency of 60.1Hz.			
B5 _h	Source Color Coding	WO	NC	Allows the host to specify the color coding method that is being used.			
C0 _h	Display Usage Time	RO	С	Returns the current value (in hours) of 'active power on' time accumulated by the display in the ML, SH and SL bytes. The MH byte must be set to 00_h . 'Active power on' time is defined as the period when the emissive elements(s) of the display – cathodes for a CRT, fluorescent lamps for a LCD, etc. – are active.			
C8 _h	Display Controller ID	RO	NC Manda- tory	This VCP code provides the host with knowledge of the controller manufacturer and unique chip ID used in a particular display. This information will enable a host to use a table-based approach (by applications) to identify what chip specific features and or limitations may apply to the attached display. SL byte: Indicates manufacturer ID MH, ML and SH bytes: Indicate a unique chip ID assigned by the controller manufacturer. These three bytes declare a unique numeric identification (fingerprint) each manufacturer assigns to his controller chip. This number should be based on firmware revision, silicon revision, chip model, panel identification, and or other pertinent factors that impact the performance and capabilities of the implementation. NOTE: Each controller manufacturer supporting this command is			

Table 8-9: Display Control VCP Codes

					ontrol VCF Codes	
Code	Name	Type	Function		Description	
					ish and maintain an equivalence table between actual or (alphanumeric marketing identifier) and simple here.	
				 A host application would use the combination of data from MH, ML and SH chip ID bytes together with the SL manufacturer ID byte to uniquely identify a particular controller. 		
				Byte: SL		
				$00_{\rm h}$	Reserved	
				01 _h	Conexant	
				02 _h	Genesis Microchip	
				03 _h	Macronix	
				$04_{\rm h}$	IDT (Integrated Device Technology)	
				05 _h	Mstar Semiconductor	
				06 _h	Myson	
				07 _h	Philips	
				08 _h	PixelWorks	
				09 _h	RealTek Semiconductor	
				$0A_h$	Sage	
				$0B_h$	Silicon Image	
				0C _h SmartASIC		
				$0D_h$	STMicroelectronics	
				0E _h	Topro	
				0F _h	Trumpion	
				10 _h	Welltrend	
				11 _h 12 _h	Samsung Novatek Microelectronics	
				13 _h	STK	
				13 _h	Silicon Optix Inc.	
				15 _h	Texas Instruments	
				16 _h	Analogix Semiconductor	
				17 _h	Quantum Data	
				18 _h	NXP Semiconductors	
				19 _h	Chrontel	
				$1A_h$	Parade Technologies	
				1B _h	THine Electronics	
				1C _h	Trident	
				$1D_h$	Micronas	
				$1E_h \rightarrow FE_h$	Reserved, must be ignored	
				FF_h	Not defined – a manufacturer designed controller	
				For extension	ons to this list, check the MCCS_UP.pdf document at www.vesa.org.	
C9 _h	Display Firmware	RO	С	This VCP code r	results in two bytes of data being sent by the display.	
	Level			Byte: SL		
				$\geq 00_{\rm h}$	defines the firmware revision number	
				Byte: SH		
				$\geq 00_{ m h}$	defines the firmware version number	
				e.g. 03 _h , 05 _h defi	ines a firmware level of 3.5	

Table 8-9: Display Control VCP Codes

Code	Name	Type	Function		Description
CC_h	OSD	R/W	NC	Allows the host t	to select the display OSD language.
0.011	Language				ring must declare only the languages supported by the
				display.	gggggggg
				1 3	
				Byte: SL	
				$00_{\rm h}$	Reserved, must be ignored
				$01_{\rm h}$	Chinese (traditional / Hantai)
				02 _h	English
				03 _h	French
				04 _h	German
				05 _h	Italian
				06 _h	Japanese
				07 _h	Korean
				08 _h	Portuguese (Portugal)
				09 _h	Russian
				0A _h	Spanish
				$\frac{0\mathrm{B_h}}{0\mathrm{C_h}}$	Swedish Turkish
				$0D_h$	Chinese (simplified / Kantai)
				$0E_{\rm h}$	Portuguese (Brazil)
				$0F_h$	Arabic
				$10_{\rm h}$	Bulgarian
				11 _h	Croatian
				12 _h	Czech
				13 _h	Danish
				14 _h	Dutch
				15 _h	Estonian
				16 _h	Finnish
				17 _h	Greek
				18 _h	Hebrew
				19 _h	Hindi
				1A _h	Hungarian
				$1B_h$	Latvian
				1C _h	Lithuanian
				1D _h	Norwegian
				1E _h	Polish
				1F _h	Romanian Serbian
				20 _h 21 _h	Slovak
				22 _h	Slovenian
				23 _h	Thai
				24 _h	Ukrainian
				25 _h	Vietnamese
				$\geq 26_{\rm h}$	Reserved, must be ignored
				Byte: SH, ML, MH	
				$00_{\rm h}$	All other values reserved
				•	Version 2.1, 10 _h should read 0A _h . If a parser encounters
					CCS v2.1 using 10_h it should auto-correct to $0A_h$.

Table 8-9: Display Control VCP Codes

Code	Name	Туре	Function	e 8-9: Display Co		escription		
D6 _h	Power Mode	R/W	NC	Power Mode – D	PM & DPMS sta	_	supported along with other	
	Mode			Byte: SL	DPN	М	DPMS	
				00 _h	Reserved, mu			
				01 _h	On	ast oc ignor	On	
				02 _h	Off		Standby	
				03 _h	Off		Suspend	
				04 _h	Off		Off	
					re not part of the	DPM or D	PMS standards	
							functionally equivalent to	
				05 _h	turning off po	ower using	the "power button"	
				≤ 06 _h	Reserved, mu	ast be ignore	ed	
				NOTE:				
				 Following a MCCS command with a value of 01_h → 04_h, the display must respond to the appropriate DPM (or DPMS) protocols. Following a MCCS command with a value of 05_h, user intervention at the 				
				display (pressing / toggling the power switch) may be required to restore operation.				
DB_h	Image	R/W	NC	Controls aspects				
	Mode			Byte: SL	Name		Description	
				$00_{\rm h}$	-	No effect		
				0.1	Full mode	Linear ex	pansion (compression) of	
				01 _h		the image	e on horizontal axis.	
				02 _h	Zoom mode		pansion (compression) of e on horizontal and vertical	
				03 _h	Squeeze mode	Display all of image content on visible screen. May result in unused areas of visible screen bars at top, bottom, or sides.		
					Variable	Display a	ll of image content by	
				04 _h			non-linear expansion	
							sion) to the horizontal axis.	
				\geq 05 _h	-	Reserved	, must be ignored	
					description of the		ith TV applications. may be found in the VESA	
DF _h	VCP Version	RO	NC Manda-	Defines the version display.	on number of the	e MCCS sta	ndard recognized by the	
	SH byte: defines the MCCS version number							
				SL byte: defines the MCCS revision number e.g. 02 _h 02 _h defines a MCCS level of 2.2 (this standard)				
				NOTE: Support compliance with			y requirement for 2 and higher.	

8.4 Geometry VCP Codes

See Section 0 for drawings to assist with interpretation of these VCP Codes.

Table 8-10: Geometry VCP Codes Cross-reference

VCP Code Name	Code	Compliance
Bottom Corner Flare	4A _h	10.6
Bottom Corner Hook	4C _h	10.6
Display Scaling	86 _h	10.7
Horizontal Convergence M / G	29 _h	10.6
Horizontal Convergence R / B	28 _h	10.6
Horizontal Keystone	42 _h	10.6
Horizontal linearity	$2A_h$	10.6
Horizontal Linearity Balance	$2C_{\rm h}$	10.6
Horizontal Mirror (Flip)	82 _h	10.7
Horizontal Parallelogram	$40_{ m h}$	10.6
Horizontal Pincushion	24 _h	10.6
Horizontal Pincushion Balance	26 _h	10.6
Horizontal Position (Phase)	$20_{ m h}$	10.6
Horizontal Size	$22_{\rm h}$	10.6
Rotation	$44_{ m h}$	10.6
Scan Mode	DA_{h}	10.7
Top Corner Flare	46 _h	10.6
Top Corner Hook	48 _h	10.6
Vertical Convergence M / G	39 _h	10.6
Vertical Convergence R / B	38 _h	10.6
Vertical Keystone	43 _h	10.6
Vertical Linearity	$3A_h$	10.6
Vertical Linearity Balance	$3C_h$	10.6
Vertical Mirror (Flip)	84 _h	10.7
Vertical Parallelogram	41 _h	10.6
Vertical Pincushion	34 _h	10.6
Vertical Pincushion Balance	36 _h	10.6
Vertical Position (Phase)	$30_{\rm h}$	10.6
Vertical Size	32 _h	10.6
Window Position (BR_X)	97 _h	10.6
Window Position (BR_Y)	98 _h	10.6
Window Position (TL_X)	95 _h	10.6
Window Position (TL_Y)	96 _h	10.6

Table 8-11: Geometry VCP Codes

Code	Name	Type	Function	Description
20 _h	Horizontal Position (Phase)	R/W	С	Increasing (decreasing) this value moves the image toward the right (left) side of the display.
22 _h	Horizontal Size	R/W	С	Increasing (decreasing) this value will increase (decrease) the width of the image.
24 _h	Horizontal Pincushion	R/W	С	Increasing (decreasing) this value will cause the right and left sides of the image to become more (less) convex.
26 _h	Horizontal Pincushion Balance	R/W	С	Increasing (decreasing) this value will move the center section of the image toward the right (left) side of the display.
28 _h	Horizontal Convergence R/B	R/W	С	Increasing (decreasing) this value will shift the red pixels to the right (left) across the image and the blue pixels left (right) across the image with respect to the green pixels.
29 _h	Horizontal Convergence M/G	R/W	С	Increasing (decreasing) this value will shift the magenta pixels to the right (left) across the image and the green pixels left (right) across the image with respect to the magenta pixels.
2A _h	Horizontal Linearity	R/W	С	Increasing (decreasing) this value will increase (decrease) the density of pixels in the image center.
2C _h	Horizontal Linearity Balance	R/W	С	Increasing (decreasing) this value shifts the density of pixels from the left (right) side to the right (left) side of the image.
30 _h	Vertical Position {Phase}	R/W	С	Increasing (decreasing) this value moves the image toward the top (bottom) edge of the display.
32 _h	Vertical Size	R/W	С	Increasing (decreasing) this value will increase (decrease) the height of the image
34 _h	Vertical Pincushion	R/W	С	Increasing (decreasing) this value will cause the top and bottom edges of the image to become more (less) convex.
36 _h	Vertical Pincushion Balance	R/W	С	Increasing (decreasing) this value will move the center section of the image toward the top (bottom) edge of the display.
38 _h	Vertical Convergence R/B	R/W	С	Increasing (decreasing) this value shifts the red pixels up (down) across the image and the blue pixels down (up) across the image with respect to the green pixels.
39 _h	Vertical Convergence M/G	R/W	С	Increasing (decreasing) this value will shift the magenta pixels up (down) across the image and the green pixels down (up) across the image with respect to the magenta pixels.
$3A_h$	Vertical Linearity	R/W	С	Increasing (decreasing) this value will increase (decrease) the density of scan lines in the image center.
3C _h	Vertical Linearity Balance	R/W	С	Increasing (decreasing) this value shifts the density of scan lines from the top (bottom) end to the bottom (top) end of the image.
$40_{\rm h}$	Horizontal Parallelogra m	R/W	С	Increasing (decreasing) this value shifts the top section of the image to the right (left) with respect to the bottom section of the image.

Table 8-11: Geometry VCP Codes

Code	Name	Type	Function	Description		
41 _h	Vertical Parallelogra m	R/W	С	Increasing (decreasing) this value shifts the top section of the image to the right (left) with respect to the bottom section of the image.		
42 _h	Horizontal Keystone	R/W	С	Increasing (decreasing) this value will increase (decrease) the horizontal size at the top of the image with respect to the horizontal size at the bottom of the image.		
43 _h	Vertical Keystone	R/W	С	Increasing (decreasing) this value will increase (decrease) the vertical size at the left of the image with respect to the vertical size at the right of the image.		
44 _h	Rotation	R/W	С	Increasing (decreasing) this value rotates the image (counter) clockwise about the center point of the screen.		
46 _h	Top Corner Flare	R/W	С	Increasing (decreasing) this value will increase (decrease) the distance between the left and right sides at the top of the image.		
48 _h	Top Corner Hook	R/W	С	Increasing (decreasing) this value moves the top of the image to the right (left).		
4A _h	Bottom Corner Flare	R/W	С	Increasing (decreasing) this value will increase (decrease) the distance between the left and right sides at the bottom of the image.		
4C _h	Bottom Corner Hook	R/W	С	Increasing (decreasing) this value moves the bottom of the image to the right (left).		
82 _h	Horizontal Mirror (Flip)	R/W	NC	This VCP code allows the image to be mirrored horizontally. Byte: SL		
				00 _h Normal mode		
				01 _h Mirrored horizontally mode		
				$\geq 02_{\rm h}$ Reserved, must be ignored		
84 _h	Vertical Mirror (Flip)	R/W	NC	This VCP code allows the image to be mirrored vertically.		
				Byte: SL		
				00 _h Normal mode		
				01 _h Mirrored vertically mode		
				$\geq 02_{\rm h}$ Reserved, must be ignored		

Table 8-11: Geometry VCP Codes

Code	Name	Type	Function	Description				
86 _h	Display Scaling	R/W	NC	Changing this value will affect the scaling (input versus output) function of the display. NOTE: This VCP code can be used to scale up or down to the maximum screen size. Controls values 02 _h → 06 _h are primarily intended for use with computer displays and controls values 07 _h → 0A _h are primarily intended for use with TV applications.				
				Dada, SI	Name	Description		
				Byte: SL 00 _h	Name	Reserved, must be ignored		
				01 _h	No scaling	No effect, 1:1 relationship		
				02 _h	Max Image	Scale to maximum image size with no aspect (AR) ratio distortion		
				03 _h	Max Vt 1	Scale to maximum vertical image size with no AR distortion		
				04 _h	Max Hz 1	Scale to maximum horizontal image size with no AR distortion		
				05 _h	Max Vt 2	Scale to maximum vertical image size with AR distortion		
				06 _h	Max Hz 2	Scale to maximum horizontal image size with AR distortion		
				07 _h	Full mode	Linear expansion (compression) of the image on horizontal axis.		
				08 _h	Zoom mode	Linear expansion (compression) of the image on horizontal and vertical axes.		
				09 _h	Squeeze mode	Display all of image content on visible screen. May result in unused areas of visible screen bars at top, bottom, or sides.		
				$0A_h$	Variable	Display all of image content by applying non-linear expansion (compression) to the horizontal axis.		
				$\geq 0 B_h$	-	Reserved, must be ignored		
				NOTE:				
				A more complethe VESA DI-		f modes $07_h \rightarrow 0A_h$ may be found in		
95 _h	Window Position (TL_X)	R/W	С	Defines the top left X pixel of an area of the image. Specified in coordinates of incoming image before any scaling etc. in the display.				
96 _h	Window Position (TL_Y)	R/W	С	Defines the top left Y pixel of an area of the image. Specified in coordinates of incoming image before any scaling etc. in the display.				
97 _h	Window Position (BR_X)	R/W	С			el of an area of the image. Specified in nage before any scaling etc. in the		

Table 8-11: Geometry VCP Codes

Code	Name	Type	Function	Description	
98 _h	Window Position (BR_Y)	R/W	С	Defines the bottom right Y pixel of an area of the image. Specified co-ordinates of the incoming image before any processing (e.g. scaling) in the display.	
DA _h	Scan Mode	R/W	NC	Controls the scan characteristics. NOTE: This VCP code is intended for use with TV applications. Byte: SL	

8.5 Miscellaneous Functions VCP Codes

Table 8-12: Miscellaneous Function VCP Code Cross-reference

VCP Code Name	Code	Compliance
Active Control	52 _h	10.11
Ambient Light Sensor	66 _h	10.7
Application Enable Key	C6 _h	10.7
Asset Tag	D2 _h	10.11.4
Auxiliary Display Data	CF _h	10.11.4
Auxiliary Display Size	CE _h	10.11
Auxiliary Power Output	$D7_h$	10.7
Degauss	01 _h	10.11.4
Display Descriptor Length	C2 _h	10.11
Display Identification Data Operation	78 _h	10.11.4
Display Technology Type	B6 _h	10.11
Enable Display of 'Display Descriptor'	C4 _h	10.7
Flat Panel Sub-Pixel Layout	B2 _h	10.11
Input Source	$60_{\rm h}$	10.11.4
New Control Value	02 _h	10.7
Output Select	$D0_h$	10.11.4
Performance Preservation	54 _h	10.7
Remote Procedure Call	76 _h	10.11.4
Scratch Pad	DE_h	10.7
Soft Controls	03 _h	10.7
Status Indicators (Host)	CD_h	10.7
Transmit Display Descriptor	C3 _h	10.11.4
TV-Channel Up / Down	8B _h	10.11.4

Table 8-13: Miscellaneous Functions VCP Codes

Code	Name	Type	Function	Description
01_h	Degauss	WO	NC	Causes a CRT display to perform a degauss cycle.
				$\begin{tabular}{c c} \textbf{Byte: SL} \\ \hline 00_h & Reserved, must be ignored \\ \hline \ge 01_h & Degauss \\ \hline \end{tabular}$
				Byte: SH, ML, MH 00h All other values reserved

Table 8-13: Miscellaneous Functions VCP Codes

Code	Name	Type	Function	Description		
Code 02h	Name New Control Value	Type R/W	NC Mandatory	Indicates a display's MCCS VCP Code register value has changed. Byte: SL		
				 8.3.2 MCCS implemented over the DisplayPort AUX channel must initiate a DP HPD interrupt event. See the DisplayPort standard for details. 		
				 VCP 02_h and 52_h allow a host/soft OSD to track a sink OSD but not the reverse. VCP CA_h controls the sink OSD. It is recommended the sink OSD be disabled when using a host/soft OSD. 		
03 _h	Soft Controls	RO	NC	Allows applications running on the host to use control buttons on the display. Byte: SL		
				$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		

Table 8-13: Miscellaneous Functions VCP Codes

		1 a	Die 8-13: Mil	scenaneous Fu	Inctions VCP Codes
Code	Name	Type	Function	Description	
				$01_{\rm h}$	Button 1 active
				02 _h	Button 2 active
				03 _h	Button 3 active
				04 _h	Button 4 active
				05 _h	Button 5 active
				06 _h	Button 6 active
				07 _h	Button 7 active
				08 _h	Button 8 active
				09 _h	Button 9 active
				$0A_h$	Button 10 active
				$0B_h$	Button 11 active
				$0C_{\rm h}$	Button 12 active
				$0D_{\rm h}$	Button 13 active
				$0E_{\rm h}$	Button 14 active
				$0F_{\rm h}$	Button 15 active
				$10_h \rightarrow 3F_h$	Predefined Button Types
				10 _h	Power
				11 _h	Brightness Up
				12 _h	Brightness Down
				13 _h	Left
				14 _h	Right
				15 _h	Up
				16 _h	Down
				17 _h	Menu
				18 _h	Enter (Select)
				19 _h	Exit (Back)
				$1A_h \rightarrow 3F_h$	Reserved
					Predefined CE Button Types
				$\begin{array}{c} 40_{h} \rightarrow 7E_{h} \\ 40_{h} \end{array}$	Volume Up
				$40_{\rm h}$ $41_{\rm h}$	Volume Op Volume Down
					Channel (Stream #) Up
				42 _h	
				43 _h	Channel (Stream #) Down Input Select Up
				44 _h	
				45 _h	Input Select Down
				46 _h	Mute Audio
				$47_h \rightarrow 7E_h$	Reserved
				7F _h	Reserved
				$80_h \rightarrow FE_h$	Release event codes
				FF_h	FIFO overrun
				Byte: ML	
				$00_h \rightarrow 0F_h$	Number of definable 'soft' buttons
				Bytes: SH,	
				MH	
				$00_{\rm h}$	All other values reserved
52 _h	Active	RO	NC	All VCP Code	s that have new values must be added to this FIFO
-	Control		Mandatory		ey occur and VCP 02_h must be set to = 02_h when
				this FIFO is No	
					2_h be written with a value = 01_h by the host this
L			1		

Table 8-13: Miscellaneous Functions VCP Codes

Code	Name	Type	Function	Description
				FIFO must be emptied.
				Reading VCP 52 _h removes the first VCP code from the FIFO.
				When the FIFO is empty, a value = 00_h must be readable and returned to the host
				A value of 00 _h indicates that the FIFO is empty and NOT that the "code page" has changed.
				The value FF _h indicates that the FIFO has been overrun.

Table 8-13: Miscellaneous Functions VCP Codes

Code	Name		Function	Description	neuons ver codes
Code	Name	Type		Description	
54 _h	Performance Preservation	R/W	NC	This command features aimed e.g. Features de The terms used are left to the m A possible value NOTE: Setting and must be ign On a read the M those functions bytes contain the indicate the cur The following to the same of t	te = 2 bytes / Read = 4 bytes provides the capability to control up to 16 at maintaining the performance of a display. Esigned to minimize image burn-in There are generic, specific implementation details nanufacturer. The is selected by setting the corresponding bit = 1. The general more than one bit = 1 in either byte is invalid nored by the display. MH-ML bytes contain the flags corresponding to that are supported by the display. The SH/SL ne bit field with the appropriate bit(s) set to rent status of the display. Table defines the SH and SL bytes, and the MH for read operations only. Image "orbiting" mode Low luminance mode with "active" video mode Slow luminance reduction when a static image is detected mode
				Bit 4	Slow luminance reduction when no user activity is detected mode
				Bits $3 \rightarrow 0$	Reserved, must be ignored
				Byte: SL / ML	
				Bit 7	A white vertical bar (or line) moving slowly horizontally across the screen on a black background.
				Bit 6	A white image filling the display area.
				Bit 5	A black vertical bar (or line) moving slowly horizontally across the screen on a black background.
				Bit 4	Reverse video the displayed image is the inverse color of the source image.
				Bit 3	Display is active but video is blanked.
				Bit 2	A gray scale pattern moving slowly horizontally across the screen.
				Bits $1 \rightarrow 0$	Reserved, must be ignored

Table 8-13: Miscellaneous Functions VCP Codes

Code	Name	Type	Function	Description
60 _h	Input Select	R/W	NC	A one byte write/read (Byte 0), allows the host to set (write) one and only one input as 'the source' and identify (read) the current input setting.
				$\begin{array}{c c} 07_h & S\text{-video 1} \\ \hline 08_h & S\text{-video 2} \\ \hline 09_h & Tuner 1 \\ \hline 0A_h & Tuner 2 \\ \hline 0B_h & Tuner 3 \\ \hline 0C_h & Component video (YPbPr / YCbCr) 1 \\ \hline 0D_h & Component video (YPbPr / YCbCr) 2 \\ \hline 0E_h & Component video (YPbPr / YCbCr) 3 \\ \hline 0F_h & DisplayPort 1 \\ \hline 10_h & DisplayPort 2 \\ \hline 11_h & Digital Video (TMDS) 3 & HDMI 1 \\ \hline 12_h & Digital Video (TMDS) 4 & HDMI 2 \\ \hline \geq 13_h & Reserved and are un-assigned \\ \hline \end{array}$
				Byte: SH, ML, MH 00 _h All other values reserved
66 _h	Ambient Light Sensor	R/W	NC	
				$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Table 8-13: Miscellaneous Functions VCP Codes

Code	Name	Type	Function	Description	
76 _h	Remote Procedure	WO	Т		on of a routine / macro resident in the display.
	Call			Byte	Definition
	Cuii			0	Defines the operation (see below)
				1+2	Offset into the LUT
				$\frac{1+2}{3+4}$	1st Red LUT value
				5+6	1st Green LUT value
				7 + 8	1 st Blue LUT value
				9 + 10	Increment to next LUT entry
				11 + 12	2 nd Red LUT value
				13 + 14	2 nd Green LUT value
				15 + 16	2 nd Blue LUT value
				17 + 18	Increment to next LUT entry
				19 + 20	Etc.
				Byte 0	Operation Definitions
				00 _h	Reserved, must be ignored
				01 _h	Indicates that a spline curve routine must be
				o I II	applied to the data (supplied in byte 1 and
					higher)) and the resulting data used to derive a
					full set of values for the display color LUT
					which must then be loaded.
				$02_h \rightarrow DF_h$	Reserved, must be ignored
				$E0_h \rightarrow FF_h$	Reserved for manufacturer specific operations
78 _h	Display Identificati on Data	RO	Т		allows a selected block (128 bytes) of Display Data (e.g., EDID or DisplayID) to be read EDID block number
	Operation			$00_{\rm h}$	Base EDID
				$01_{\rm h}$	First extension block
				02 _h	Second extension block
				03 _h	Third extension block
				≥ 04 _h	Etc.
				NOTE: After 1	receipt of the 128 bytes, users are advised to create m and verify that it matches the checksum in the
8B _h	TV- Channel Up / Down	WO	NC	behavior is imp	nent / decrement between TV-channels, the exact plementation specific (e.g. increment / decrement c channel or increment / decrement to next signal).
				Byte: SL	
				$00_{\rm h}$	Reserved, must be ignored
				01 _h	Increment channel
				02 _h	Decrement channel
				≥ 03 _h	Reserved, must be ignored

Table 8-13: Miscellaneous Functions VCP Codes

Code	Name	Type	Function	Description				
B2 _h	Flat Panel	RO	NC	Indicates the ty	pe of LCD sub-pixel structure.			
	Sub-Pixel			Byte: SL				
	Layout			$00_{\rm h}$	Sub-pixel layout is not defined			
				01 _h	Red / Green / Blue vertical stripe			
				$02_{\rm h}$	Red / Green / Blue horizontal stripe			
					03 _h	lue / Green / Red vertical stripe		
				04 _h	Blue/ Green / Red horizontal stripe			
							05 _h	Quad-pixel, a 2 x 2 sub-pixel structure with red at top left, blue at bottom right and green at top right and bottom left
						06 _h	Quad-pixel, a 2 x 2 sub-pixel structure with red at bottom left, blue at top right and green at top left and bottom right	
				$07_{\rm h}$	Delta (triad)			
				08 _h	Mosaic with interleaved sub-pixels of different colors			
				$\geq 09_{\rm h}$	Reserved, must be ignored			

Table 8-13: Miscellaneous Functions VCP Codes

Code	Name	Type	Function	Description		
B6 _h	Display Tech- nology Type	RO	NC	Indicates the base technology type. <u>Caution:</u> Care should be taken that the information declared by this code is consistent with that provided elsewhere within the same display by DisplayID or EDID.		
				Byte: SL	Transducer	
				$00_{\rm h}$	Reserved, must be ignored	
				01 _h	CRT (shadow mask)	
				02 _h	CRT (aperture grill)	
				03 _h	LCD (active matrix)	
				$04_{\rm h}$	LCoS	
				05 _h	Plasma	
				06 _h	OLED	
				07 _h	EL	
				08 _h	Dynamic MEM e.g. DLP	
				09 _h	Static MEM e.g. iMOD	
				$\geq 0A_h$	Reserved, must e ignored	
				Byte: SH	Technology Implementation	
				$00_{\rm h}$	Reserved, must be ignored	
				01 _h	Direct View CRT	
				02 _h	Direct View Flat Panel	
				03 _h	Projection Rear	
				04 _h	Projection Front	
				05 _h	Glasses Mono	
				06 _h	Glasses Stereo	
				$\geq 07_{\rm h}$	Reserved, must be ignored	
				Byte: ML		
				≥ 00 _h	Reserved, must be ignored	
				Byte: MH		
				≥ 00 _h	Reserved, must be ignored	
C2 _h	Display Descriptor Length	RO	С	Returns the length (in bytes) of non-volatile storage in the display available for writing a display descriptor – the maximum descriptor length is 256 bytes See VCP code C3 _h .		
C3 _h	Transmit Display Descriptor	R/W	T	Allows a display descriptor (up to maximum length defined by the display (see code C2 _h) to be written (read) to (from) non-volatile storage in the display. The data must conform to ISO 8859-2 (Latin 1) code set (ASCII code).		
					s made to write beyond the maximum storage criptor must be truncated with the excess bytes d.	

Table 8-13: Miscellaneous Functions VCP Codes

Code	Name	Type	Function	Description	
C4 _h	Enable Display of 'Display Descriptor'	R/W	NC	If enabled, the display descriptor written to the display using VCP code C3 _h must be displayed when no video is being received. The duration for which it is displayed is left to individual manufacturers.	
				Byte: SL	
				00 _h Reserved, must be ignored	
				01 _h Display is enabled	
				02 _h Display is disabled	
				$\geq 03_{\rm h}$ Reserved, must be ignored	
C6 _h	Application Enable Key	RO	NC	A 2-byte value used to allow an application to only operate with known products. The display manufacturer and application author agree to a code such that application will only run when a valid code is present in the display.	
C7 _h	Display Enable Key	WO	NC	Caution: This VCP code has been deprecated. It must NOT be implemented in new designs!	
				The following description of this VCP in versions prior to V2.2 is provided for reference ONLY!	
				A 2-byte value used to provide display security. If the display does not receive a code that it recognizes to be valid then it shall cease normal operation and indicate to the user that there is a security violation.	
				In order to allow correct display of POST etc messages this will become effective some period (defined by the manufacturer) after the display is powered on. The key will remain valid until either the display is powered off or the interface is disconnected.	

Table 8-13: Miscellaneous Functions VCP Codes

Code	Name	Type	Function	Description			
CDh	Status Indicators (Host)	R/W	NC	This command provides the capability to control up to 16 LED (or similar) indicators which may be used to indicate aspects of the host system status. The capability string must report the functions supported by the display and these must be mapped to the 16 bits of the command in the sequence reported in the capability string starting with the most significant bit of the first byte. Meaning of values reported in the capability string:			
				Byte: SH		Mapping #	
				Bit 7	Host power is 'on'	1	
				Bit 6	Hard drive is active	2	
				Bit 5	New e-mail received	3	
				Bit 4	New voicemail received	4	
				Bit 3	Appointment reminder	5	
				Bit 2	Phone is busy	6	
				Bit 1	Speaker phone function active	7	
				Bit 0	Battery is charging	8	
				Byte: SL			
				Bit 7	LAN is active	9	
				Bits $6 \rightarrow 0$	Reserved, must be ignored	10 → 16	
					ng a "1" to the indicator must tur he indicator must turn it 'off'.	n it 'on' and	
CE _h	Auxiliary Display Size	RO	NC	An 'auxiliary display' is a small alphanumeric display associated with the primary display and able to be accessed via the primary display. This command returns a 1-byte value that defines the number of characters and the number of rows available. The format is:			
				Byte: SL Bits $7 \rightarrow 6$	The number of rows + 1		
					The number of characters / row -	+ 1	
				i.e. The maximus	m auxiliary display size is 5 rows	s each with 65	
CFh	Auxiliary Display Data	WO	T	with the primary display. This command to be displayed of to ISO 8859-2 (I. The auxiliary displayed of the surface of the sur	play' is a small alphanumeric dis- display and able to be accessed variansmits a number of bytes of alp- ant the auxiliary display. The data atin 1) code set (ASCII code). play will be written from the top- along each line and then starting a	whanumeric data a must conform left position,	

Table 8-13: Miscellaneous Functions VCP Codes

Code	Name	Type	Function	Description	
D0 _h	Output Select	R/W	NC		te/read (Byte 0), allows the host to set (write) one ource to output and identify (read) the current
				Byte: SL	Output Definition
				01 _h	Analog video (R/G/B) 1
				02 _h	Analog video (R/G/B) 2
				03 _h	Digital video (TMDS) 1 DVI 1
				$04_{\rm h}$	Digital video (TMDS) 2 DVI 2
				05 _h	Composite video 1
				06 _h	Composite video 2
				07 _h	S-video 1
				$08_{\rm h}$	S-video 2
				09 _h	Tuner 1
				$0A_h$	Tuner 2
				$0B_h$	Tuner 3
				$0C_h$	Component video (YPbPr / YCbCr) 1
				$0D_h$	Component video (YPbPr / YCbCr) 2
				$0E_{\rm h}$	Component video (YPbPr / YCbCr) 3
				$0F_h$	DisplayPort 1
				$10_{\rm h}$	DisplayPort 2
				11 _h	Digital Video (TMDS) 3 HDMI 1
				12 _h	Digital Video (TMDS) 4 HDMI 2
				$13_h \rightarrow FF_h$	Reserved and are un-assigned

Table 8-13: Miscellaneous Functions VCP Codes

Code	Name	Туре	Function	Description			
D2 _h	Asset Tag	R/W	T	Data length: Read / write = 16 bytes This VCP codes allows an Asset Tag to be written to a display or read from a display. It also allows for control by the display manufacturer of which applications may write an asset tag.			
				No key required	Read operation: No key required, the 16 bytes returned by the display may contain any value in bytes 0 and 1. The key should not be returned.		
				A successful w	Write operation: A successful write operation requires that bytes 0 and 1 contain the correct key, if they do not then the display must take no action.		
				Byte	Definition		
				0	MSB of key		
				1	LSB of key		
				2	MSB of asset tag		
				3	↑		
				4			
				5			
				6			
				7			
				8			
				9			
				10			
				11			
				12			
				13			
				14	↓		
				15	LSB of asset tag		
				2 (MSB of the a characters then character A0 _h a bytes packed w	tored in ASCII (code page # 437) starting in byte asset tag). If the stored asset tag is < 14 the asset tag must be terminated with the ASCII and, if required, the remainder of the asset tag ith ASCII character 20 _h .		
				The 2-byte key may be as simple a "secret" number or be derived by taking certain required elements of the base EDID and manipulating the values of those elements by a mathematical formula – the formula used for a particular display (or family of displays) should only be released by the display manufacturer to users they trust.			
					shipped from the manufacturing location, the data $et=00_h$ unless an asset tag has been stored to meet uirement.		

Table 8-13: Miscellaneous Functions VCP Codes

Code	Name	Type	Function	Description
D7 _h	Auxiliary Power Output	R/W	NC	Controls output of an auxiliary power output from a display to a host device.
DE _h	Scratch Pad	R/W	NC	Provides 2 bytes of volatile storage for use of software application(s) leading to more efficient operation. NOTE: 1. The display must set these bytes = 00 _h following a power-on or power off/on cycle. Aside from the actions of note 1, the display must not take any action with these bytes.

8.6 Audio Function VCP Codes

Table 8-14: Audio Function VCP Code Cross-reference

VCP Code Name	Code	Compliance
Audio: Balance L / R	93 _h	10.7
Audio: Bass	91 _h	10.7
Audio: Jack Connection Status	65 _h	10.7
Audio: Microphone Volume	64 _h	10.6
Audio: Mute (screen blank)	$8D_h$	10.7
Audio: Processor Mode	94 _h	10.7
Audio: Speaker Select	63 _h	10.7
Audio: Speaker Volume	62 _h	10.7
Audio: Treble	8F _h	10.7

Table 8-15: Audio Function VCP Codes

Code	Name	Type	Function	Description	
62 _h	Audio: Speaker	R/W	NC	Allows the volume	me to be adjusted.
	Volume			Byte: SL	
				$00_{\rm h}$	Fixed (default) level
				$01_h \rightarrow FE_h$	Volume level
				FF_h	Mute
				NOTE: The lever maximum at a v	el will increase from a minimum at a value = 01_h to a alue = FE_h
63 _h	Speaker Select	R/W	NC	Allows a "pair" speakers to be se	(may be physically more than two speakers) of elected.
				Byte: SL	
				$00_{\rm h}$	FL/FR
				$01_{\rm h}$	SL/SR
				02 _h	RL/RR
				03_{h}	FC/LFE
				04 _h	RC
				05 _h	FLC/FRC
				06 _h	RLC/RRC
				$07_{\rm h}$	FLW/FRW
				08 _h	FLH/FRH
				09 _h	TC
				$0A_h$	FCH
				$0B_h \rightarrow FF_h$	Reserved
64 _h	Audio: Micro- phone Volume	R/W	С	Increasing (decreasing) this value will increase (decrease) the microphone gain.	

Table 8-15: Audio Function VCP Codes

Code	Name	Type	Function	Description			
65 _h	Audio: Jack Connection Status	RO	NC	the current confi active in an audi This command p (pairs) of audio.	This bitmask allows the source to determine the capabilities as well as the current configuration of speakers/lineout connected to a display, or active in an audio only device. This command provides the capability to identify up to 16 connections (pairs) of audio.		
				the mask that are manufacturer to This does NOT	Hardware support for an audio channel/pair is identified by the bits in the mask that are set to 1 in bytes SL and SH. These bits are set by the manufacturer to identify the presence of audio hardware in the device. This does NOT indicate the presence of connected external speakers to the corresponding connector on the device.		
				The presence of connected audio channel/pair is identified by the bits in the mask that are set to 1 in bytes ML and MH. These bits are set or reset upon connecting or removing external speakers to the corresponding connector on the device.			
				be determined by	If the device is a speaker/amp or audio only device, its location(s) can be determined by each bit that is set to 1. Data size: 4 bytes. Read Only. The default value is 00 00 00 00 _h		
				Byte: SL	Audio Channels Connected		
				Bit 0	FL/FR		
				Bit 1	LFE		
				Bit 2	FC		
				Bit 3	RL/RR		
				Bit 4	RC		
				Bit 5	FLC/FRC		
				Bit 6	RLC/RRC		
				Bit 7	FLW/FRW		
				Byte: SH	Audio Channels Connected		
				•	ELIJ/EDIJ		
				Bit 0 Bit 1	FLH/FRH TC		
				Bit 1 Bit 2	FCH		
				Bit 2	Reserved		
				Bit 3	Reserved		
				Bit 5	SL/SR		
				Bit 6	SPDIF Out Jack		
				Bit 7			

Table 8-15: Audio Function VCP Codes

Code	Name	Type	Function	Description	
					CONTINUED ON NEXT PAGE
				Byte: ML	Audio Channels Supported
				Bit 0	FL/FR
				Bit 1	LFE
				Bit 2	FC
				Bit 3	RL/RR
				Bit 4	RC
				Bit 5	FLC/FRC
				Bit 6	RLC/RRC
				Bit 7	FLW/FRW
				Byte: MH	Audio Channels Supported
				Bit 0	FLH/FRH
				Bit 1	TC
				Bit 2	FCH
				Bit 3	Reserved
				Bit 4	Reserved
				Bit 5	SL/SR
				Bit 6	SPDIF Out Jack
				Bit 7	HDMI Out Jack
				<u>NOTES:</u> 1.	The "New Control Value" register 02_h will be set and "Active Control" register 52_h updated when a connection state changes.
				2.	VCP 65 _h , as returned with "GetVCPFeature" [VCP 65 _h], returns a 4 byte bitmask, identifying both the "available" physical connections on the product, and the "currently" connected speakers/lineout to the device.
				3.	The capabilities string reports only support for VCP 65 _h but includes NO data bytes. The host must use "GetVCPFeature" to read the four-byte information packet.

Table 8-15: Audio Function VCP Codes

Code	Name	Type	Function	Description	
8D _h	Audio Mute / Screen Blank	R/W	NC		audio to be muted or un-muted. Also provides for een of the display whether or not there is a valid video
				Byte: SL	
				00 _h	Reserved, must be ignored
				$01_{\rm h}$	Mute the audio
				02 _h	Un-mute the audio
				$\geq 03_{\rm h}$	Reserved, must be ignored
				D . CTT	1
				Byte: SH	
				$\frac{00_{\rm h}}{0.1}$	Reserved, must be ignored
				$\begin{array}{c c} & 01_{\rm h} \\ \hline & 02_{\rm h} \end{array}$	Blank the screen Un-blank the screen
				$\geq 03_{\rm h}$	Reserved, must be ignored
				≥ 03 _h	Reserved, must be ignored
				Byte: ML	
				$00_{\rm h}$	Audio Mute NOT supported
				02 _h	Audio Mute supported
				∪2 _n	Trade Supported
				Byte: MH	
				$00_{\rm h}$	Screen Blanking NOT supported
				02 _h	Screen Blanking supported
8F _h	Audio Treble	R/W	NC	Allows control of	of the high frequency component of the audio.
				Byte: SL	
				$00_{\rm h}$	Reserved, must be ignored
				$01_h \rightarrow 7F_h$	Cut the treble
				$80_{\rm h}$	Neutral no effect
				$81_h \rightarrow FF_h$	Boost the treble
					ue is reduced below 80 _h , the treble content will be
				As value is increboosted	eased above 80 _h , the treble content will be increasingly
91 _h	Audio Bass	R/W	NC	Allows control	of the low frequency component of the audio.
				Byte: SL	
				$00_{\rm h}$	Reserved, must be ignored
				$01_h \rightarrow 7F_h$	Cut the bass
				80 _h	Neutral no effect
				$81_h \rightarrow FF_h$	Boost the bass
					ue is reduced below 80 _h , the bass content will be
					eased above 80 _h , the bass content will be increasingly

Table 8-15: Audio Function VCP Codes

Code	Name	Type	Function	Description	
93 _h	Audio Balance L/R	R/W	NC	This control affects the left – right balance of audio output. Increasing (decreasing) the value will cause the balance to move to the right (left).	
				Byte: SL	
				$00_{\rm h}$	Reserved, must be ignored
				$01_h \rightarrow 7F_h$	Left (L) channel dominates
				$80_{\rm h}$	Centered
				$81_h \rightarrow FE_h$	Center / Sub-woofer
				FF_h	Reserved, must be ignored
				NOTE: As value is reduced below 80 _h , the left channel will be increasingly dominant.	
				As value is increasingly don	eased above 80 _h , the right channel will become ninant.

Table 8-15: Audio Function VCP Codes

Code	Name	Type	Function	Description	Description		
94 _h	Audio Processor Mode	R/W	NC	This control allows one of several audio processing modes to be selected.		ral audio processing modes to be	
				Byte: SL	Name	Definition	
				$00_{\rm h}$	Audio process	sing is not supported.	
				01 _h	Mono	Both display audio channels use the left audio channel	
				02 _h	Stereo	Incoming left and right audio channels feed separate display output audio channels.	
				03 _h	Stereo expanded	As defined by the manufacturer.	
				$04_h \rightarrow 10_h$	Reserved	Must be ignored	
				11 _h	SRS 2.0	SRS stereo	
				12 _h	SRS 2.1	SRS stereo + subwoofer	
				13 _h	SRS 3.1	SRS stereo + subwoofer + center	
				14 _h	SRS 4.1	SRS stereo + subwoofer + rear	
				15 _h	SRS 5.1	SRS stereo + subwoofer + rear + center	
				16 _h	SRS 6.1	SRS stereo + subwoofer + side	
				17 _h	SRS 7.1	SRS stereo + subwoofer + side + center	
				$18_h \rightarrow 20_h$	Reserved	Must be ignored	
				21 _h	Dolby 2.0	Dolby stereo	
				22 _h	Dolby 2.1	Dolby stereo + subwoofer	
				23 _h	Dolby 3.1	Dolby stereo + subwoofer + center	
				24 _h	Dolby 4.1	Dolby stereo + subwoofer + rear	
				25 _h	Dolby 5.1	Dolby stereo + subwoofer + rear + center	
				26 _h	Dolby 6.1	Dolby stereo + subwoofer + side	
				27 _h	Dolby 7.1	Dolby stereo + subwoofer + side + center	
				$28_h \rightarrow 30_h$	Reserved	Must be ignored	
				31 _h	THX 2.0	THX stereo	
				32 _h	THX 2.1	THX stereo + subwoofer	
				33 _h	THX 3.1	THX stereo + subwoofer + center	
				34 _h	THX 4.1	THX stereo + subwoofer + rear	
				35 _h	THX 5.1	THX stereo + subwoofer + rear + center	
				36 _h	THX 6.1	THX stereo + subwoofer + side	
				37 _h	THX 7.1	THX stereo + subwoofer + side + center	
				$\geq 38_{\rm h}$	Reserved	Shall be ignored	

8.7 DPVL Support VCP Codes

Table 8-16: DPVL Support Cross-reference

VCP Code Name	Code	Compliance
Body CRC Error Count	BC_h	n/a
Client ID	BD_{h}	n/a
Header Error Count	BB_h	n/a
Link Control	BE_h	n/a
Monitor Status	B7 _h	n/a
Monitor X Origin	B9 _h	n/a
Monitor Y Origin	BA_h	n/a
Packet Count	$B8_h$	n/a

NOTE:

- All DPVL data values are 2 bytes
- See the DPVL standard for details of the meaning and usage of each of these VCP codes.
- Compliance procedures for DPVL VCP Codes is beyond the scope of the current standard

Table 8-17: DPVL Support VCP Codes

Code	Name	Type	Function	n Description		
B7 _h	Monitor Status	RO	NC	Video mode and status of a DPVL capable monitor.		
				Byte: SL	Value	Definition
				Bits $7 \rightarrow 3$		Reserved, set $= 0$
				Bit 2	= 0	No error detected in the last header received
					= 1	Error detected in the last header received
				Bit 1	= 0	Monitor is able to receive the next packet
					= 1	Monitor is unable to accept another packet
				Bit 0	= 0	Raster scan mode
					= 1	DPVL mode
B8 _h	Packet Count	R/W	С	Counter for the DPVL packets received (valid and invalid ones). This value counts from $00~00_h$ to FF FF _h and then rolls over to $00~00_h$. The host can reset the value to $00~00_h$.		
B9 _h	Monitor X Origin	R/W	С	The X origin of the monitor in the virtual screen. The support of this command indicates the multi-display support of the display. If a display supports this command, the monitor must also support Monitor Y Origin command.		
BA_h	Monitor Y Origin	R/W	С	"00 00 _h " to "FF FF _h " or 0 to 65535 The Y origin of the display in the virtual screen. The support of this command indicates the multi-display support of the display. If a display supports this command, the monitor must also support Monitor X Origin command. "00 00 _h " to "FF FF _h " or 0 to 65535		
BB_h	Header Error Count	R/W	С	Error Counter for the DPVL header. The counter value saturates at FF FF _h . Host can reset to 00 00 _h .		
BC_h	Body CRC Error Count	R/W	С	CRC error Counter for the DPVL body (containing video data). The counter value saturates at FF FF _h . The Host can reset to 00 00 _h		
BD_h	Client ID	R/W	С	Assigned identification number for the monitor. Valid range is 0000_h to FF FE _h ; FF FF _h is reserved for broadcast.		
BE_h	Link	R/W	NC	Indicates the status of the DVI link.		
	Control			Byte: SL	Value	Definition
				Bits $7 \rightarrow 1$		Reserved, set $= 0$
				Bit 0	= 0	Link shutdown is disabled
					= 1	Link shutdown is enabled

8.8 Manufacturer Specific VCP Codes

Table 8-18: Manufacturer Specific VCP Codes

	Table 6-16. Manufacturer Specific Ver Codes				
Code	VCP Code Name	Type	Function	Description	
E0 _h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
E1 _h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
E2 _h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
E3 _h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
E4 _h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
E5 _h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
E6 _h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
E7 _h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
E8 _h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
E9 _h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
EA_h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
EB_{h}	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
EC_h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
ED_h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
EE_h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
EF_{h}	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
$F0_h$	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
F1 _h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
F2 _h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
F3 _h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
F4 _h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
F5 _h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
F6 _h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
F7 _h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
F8 _h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
F9 _h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
FA_h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
FB_h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
FC_h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
FD_h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
FE_h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	
FF_h	Manufacturer Specific	TBD	TBD	May be defined by display manufacturer	

9 Compliance

9.1 Overview

This section specifies the requirements and procedures to ensure that a display is compliant with VESA's MCCS Version 3.

Compliance may either be by visual assessment with a suitably trained and qualified operator or by instrumentation at varying levels up to and including a fully automatic implementation. The test patterns required at each stage of the compliance procedures will vary depending on the characteristics of the assessment / measurement system being used. This standard does not address the issue of suitable patterns. However, the VESA FPDM-2 standard (Flat Panel Display Measurements) should be used as both a guide to good metrology practice and a source of many suitable test patterns.

The appropriate compliance procedures depends on the VCP Codes supported by a particular display but a compliant display requires that all appropriate compliance procedures are performed with a 'Compliant' result at each stage of the compliance procedures for all supported VCP codes.

The test procedures assume that a software tool is available that can exercise the VCP Codes. It is the responsibility of the organization conducting the compliance procedure to verify that any software tool(s) and detailed compliance procedures are in conformance with the requirements of this standard.

9.2 Compliance of Manufacturer VCP Codes

Manufacturer VCP codes can be considered to have two sub-classes:

- Those that are public and extend the scope of the MCCS VCP code set in a manner that the manufacturer wishes to promote and have used, and
- Those that are private and perform functions that the manufacturer does not wish the end user to access.

All public manufacturer VCP codes (see Table 8-18) that are declared in the capability string must also be required to pass a test for compliance with the product design specification. The procedure(s) used to ensure the compliance of the manufacturer VCP Codes is (are) the responsibility of the display manufacturer.

Private manufacturer VCP codes are outside the scope of this compliance procedure.

9.3 Summary of Compliance

The appropriate compliance procedures depends on the VCP Codes supported by a particular display but a compliant display requires that all appropriate compliance procedures are performed with a 'Compliant' result at every stage.

9.4 Compliance Testing - General Points

- 4. VESA MCCS Standard Version 2.2 requires that VCP Codes 02_h (New Control Value) and DF_h (VCP Version) must be implemented. Compliance requires that these are supported, correctly reported in the Capability String and pass the appropriate compliance procedures.
- 5. Read and parse the Capability String to determine the VCP Codes that the display claims to support, this list must define the basic display feature set for compliance tests.
- 6. Verify that all elements of the display feature set (except Manufacturer Specific and DPVL Support VCP Codes) meet the requirements of the appropriate compliance test procedure.
- 7. Verify that unassigned VCP Codes (reserved) are not used by the display use of these VCP Codes must result in non-compliance, except where the MCCS_UP.pdf document (www.vesa.org) has been used to indicate a new definition(s). In this case a display is

- considered compliant if it does not use VCP Codes that are unassigned in either the MCCS standard or the MCCS UP document.
- 8. The compliance test procedures defined are segregated into several sub-groups. In some cases a common compliance procedure for several of the VCP Codes of the sub-group is defined, in other cases there are specific compliance procedures for individual VCP Codes.
- 9. In some cases, the maximum or minimum value may set the display into an unfavorable mode which renders it inoperable to the casual user (e.g. no image is visible). Minimum and maximum values should be designed to avoid this problem.

10 Compliance Procedures

10.1 Introduction

This section gives a compliance procedure for each of the groups of VCP Codes that a display may support.

NOTE: Support for some VCP Codes is a requirement for compliance but most are optional allowing design flexibility.

10.2 Organization of Compliance Procedures

Wherever possible a compliance procedure is written to cover a group of VCP codes with common characteristics, however, this is not possible in all cases, and there are some compliance procedures that are only appropriate for a specific VCP code. The follow table summarizes the purpose and scope of the various compliance procedures.

Table 10-1: Compliance Procedures Purpose and Scope

VCP Group Description	Scope	Procedure(s)
Mandatory	VCP Code Page (00 _h)	10.8
	New control value (02 _h)	10.3
	Active Control (52 _h)	10.11
	Display Controller ID (C8 _h)	10.11
	VCP version (DF _h)	10.4
Capability String	All	10.5
Continuous "C"	All VCP codes of function "C" not identified explicitly	10.6
Non-continuous "NC"	All VCP codes of function "NC" not identified explicitly	10.7
Presets	Preset VCP codes defined in 8.1	10.8
Auto set-up	Auto Set-up (1E _h) and Auto Color Set-up (1F _h)	10.9
6 Axis Color	Saturation	10.10.1
	Hue	10.10.2
Read Only "RO"	Horizontal and Vertical frequency (ACh and AEh)	10.11.1
	Display usage time (C0 _h)	10.11.2
	Others of type 'RO'	10.11.3
	1. Display Controller Type, (C8 _h)	
	2. Display Firmware Level, (C9 _h)	
	3. Flat Panel Sub-Pixel layout, (B2 _h)	
	4. Display technology Type, (B6 _h)	
	5. Application Enable Key, (C6 _h)	
	Auxiliary Display Size, (CE _h)	10.11.4
Write only "WO"	Degauss (01 _h)	10.11.5

Table 10-1: Compliance Procedures Purpose and Scope

VCP Group Description	Scope	Procedure(s)
Table "T"	Input source & output select (60 _h & D0 _h)	10.12.1
	Source timing mode (B4 _h)	10.12.2
	Display Identification Data Operation (78 _h)	10.12.3
	Auxiliary display data (CF _h)	10.12.4
	Transmit display descriptor (C3 _h)	10.12.5
	Asset tag (D2 _h)	10.12.6
	LUT size (73 _h)	10.12.7
	Single point LUT operation (74 _h)	10.12.8
	Block LUT (75 _h)	10.12.9
	Remote procedure call (76 _h)	10.12.10
	TV-channel up/down (8B _h)	10.12.11
	Auto set-up on/off (A2 _h)	10.12.12
	Display enable key (C7 _h)	10.12.13

10.3 Compliance Procedure for VCP Code 02_h – New Control Value

This VCP Code is used to determine if a display control has been used, this control allows for the synchronization of display hardware/firmware and a software utility.

For 'buttonless' displays, use compliance procedure 10.3.1. For displays with user controls to access the conventional OSD, use compliance procedure 10.3.2

10.3.1 Buttonless Display – Verify Read and Write Operation of VCP Code 02h

The following compliance procedure verifies that the display accurately reports the absence of buttons or other manual controls to set adjustments via the conventional OSD.

Table 10-2: Compliance Procedure (buttonless) for VCP Code 02h

Stage #	Action	Result
1	Set the display to 'factory default'	n/a
2	Read the current value at VCP Code 02 _h	If value read = FF _h : Compliant
		If value read ≠ FF _h : Not compliant
3	Write any value other than FF _h to VCP Code 02 _h	n/a
4	Read the current value at VCP Code 02 _h	If value read = FF_h : Compliant
		If value read ≠ FF _h : Not compliant
5	Determination of compliance	All stage results are 'Compliant': VCP Code 02 _h is compliant

10.3.2 Display with Manual Controls – Verify Read and Write of VCP Code 02h

The following test verifies that the display supports the ability to read and write to VCP code 02h for synchronization between hardware and software adjustments made to the display.

Table 10-3: Compliance Procedure for VCP Code 02_h

Stage #	Action	Result
1	Set the display to 'factory default'	n/a
2	Write a value of 01 _h to VCP Code 02 _h	If value read = FF_h : Compliant
		If value read ≠ FF _h : Not compliant
3	Read the current value at VCP Code 02 _h	If value read = 01 _h : Compliant and continue to stage 4
		If value read ≠ 01 _h : Not compliant
4	Activate first user control function with user display controls and OSD	n/a
5	Read the current value at VCP Code 02 _h	If value read $> 01_h$ AND $<$ FF _h : Compliant and continue to stage 6 If value read $= 00_h$, 01_h OR FF _h : Not compliant
6	Repeat stages 4 and 5 with all other user control functions with user display controls and OSD	n/a
7	Determination of compliance	All stage results are 'Compliant': VCP Code 02 _h is compliant

Caution:

This procedure will verify the basic operation but does not verify that the operation will perform correctly in real-time. The requirement is that there is no discernable lag in synchronization to a user.

10.4 Compliance Procedure for VCP Code DF_h – VCP Version

Table 10-4: Compliance Procedure for VCP Code DF_h

Stage #	Action	Result
1	Read the current value at VCP Code DF _h	If value read matches the MCCS version and revision levels intended for this display design, then Compliant.
		If value read does not match either or both the MCCS version and revision level intended for this design then Not Compliant.

10.5 Compliance Procedure for Capability String

The supported VCP codes reported in the capability string must match the supported codes listed in the design specification for the display.

Table 10-5: Compliance Procedure for Capability String

Stage #	Action	Result
1	Verify the Capability String format matches the requirements of section 6.	If the Capability string matches the requirements of section 6, then Compliant.
		If the Capability string does not match the requirements of section 6, then Not Compliant.
2	Read and parse the Capability String	n/a
3	Verify that support for the required VCP codes is reported.	If VCP Codes 02 _h , New Control Value and DF _h , VCP Version are supported then, Compliant

Table 10-5: Compliance Procedure for Capability String

Stage #	Action	Result
		If either or both VCP Codes 02_h , New Control Value and DF _h , VCP Version are not supported then, Not Compliant
4	Verify that all VCP Codes in range $00_h \rightarrow DF_h$ inclusive reported as supported are defined by	If all supported VCP Codes are defined, then Compliant.
	the MCCS standard.	If one or more supported VCP Codes are not defined (i.e. are unassigned and reserved) then, Not Compliant.
5	Compare supported VCP Codes in Capability String with the list of supported VCP Codes	If Capability String and design specification list of supported VCP codes match exactly then, Compliant.
	from the display design specification.	If Capability String and design specification list of supported VCP codes do not match then, Not Compliant.
		If options within a supported VCP code do not match in the Capability string and the design specification then, Not Compliant.
6	All "public" VCP Codes in $E0_h \rightarrow FF_h$ range	If the "vcpname" field(s) (see VESA DDC/CI Standard version 1.1, section 6.7.3) is present with an appropriate ¹ name, then Compliant.
		If the "vcpname" field(s) (see VESA DDC/CI Standard version 1.1, section 6.7.3) is not present or contains a meaningless name, then Not Compliant.
7 2	All "public" VCP Codes in $E0_h \rightarrow FF_h$ range	If the operation of the VCP Code(s) is in compliance with the product engineering specification, then Compliant.
		If the operation of the VCP Code(s) is not in compliance with the product engineering specification, then not Compliant.

10.6 Compliance Procedure for Controls with a Continuous Range of Adjustment

Many VCP Codes are of function "C" meaning that the valid values constitute a continuous range from 0 (the minimum value) to a defined maximum of ≤ 65535 (FF FF_h).

Some VCP Codes will have a granularity which does not permit individual increments in step 5 (Table 10-6) to be visible. In these cases, the compliance requirement is for a smooth transition from the minimum condition to the maximum condition.

Table 10-6: Compliance Procedure for Continuous Range VCP Codes

Stage #	Action	Result
1	Use GetVCP command to obtain the maximum supported value.	n/a
2	Compare reported maximum value to design specification maximum value for this VCP Code.	If reported and design specification maximum values are equal then, Compliant.

¹ An 'appropriate name' is one that is descriptive of the function performed.

² Depending on the nature of the function, an existing compliance test procedure or a new, VCP Code specific, procedure may be required. Determination, and development when appropriate, of the correct procedure is the responsibility of the testing organization.

Table 10-6: Compliance Procedure for Continuous Range VCP Codes

Stage #	Action	Result
		If reported and design specification maximum values are not equal then, Not Compliant.
3	Set the display to factory default condition.	n/a
4	Use SetVCP to write a value of 00 _h to the current VCP Code	Ensure that the appropriate display characteristic changed to minimum condition.
5	Use SetVCP to increment the adjustment value of the current VCP Code by 1.	Ensure that there is a visibly smooth change in the appropriate characteristic.
6	Repeat stage 5 until VCP Code is at maximum value	Ensure that appropriate display characteristic is at maximum condition.
7	Determine whether display is Compliant or Not Compliant	If stages $4 \rightarrow 6$ produce a smooth transition of the appropriate display characteristic from the minimum condition to the maximum condition then, Compliant
		If stages 4 → 6 do not produce a smooth transition of the appropriate display characteristic from the minimum condition to the maximum condition then, Not Compliant

10.7 Compliance Procedure for Controls with a Non-Continuous Range of Adjustment

Several VCP Codes are of function "NC" meaning that only a limited number of values are valid. The maximum number of valid values is defined in this standard but individual display designers may choose to implement a sub-set and report accordingly in the Capability String.

Table 10-7: Compliance Procedure for Non-Continuous Range VCP Codes

Stage #	Action	Result
1	Obtain the list of supported values form the Capability String.	NA
2	Compare reported supported values to design specification-supported values for this VCP	If reported and design specification supported values are equal then, Compliant.
	Code.	If reported and design specification supported values are not equal then, Not Compliant.
3	Set the display to factory default condition.	NA
4	Use SetVCP to write the first supported value (lowest numerical value) to the current VCP Code	Ensure that the appropriate display characteristic changed accordingly.
5	Use SetVCP to write the next supported value (moving from lowest to highest numerical value) to the current VCP Code	Ensure that the appropriate display characteristic changed accordingly.
6	Repeat stage 5 until all supported values for this VCP Code have been exercised.	Ensure that the appropriate display characteristic changed accordingly.

Table 10-7: Compliance Procedure for Non-Continuous Range VCP Codes

Stage #	Action	Result
7	Determine whether display is Compliant or Not Compliant	If stages $4 \rightarrow 6$ produce changes in the appropriate display characteristic for each supported value then, Compliant If stages $4 \rightarrow 6$ do not produce changes in the appropriate display characteristic for each supported value then, Not Compliant

10.8 Compliance Procedure for Preset VCP Codes

There are a number of VCP Codes associated with presetting some or all adjustments to known (factory) defaults, these are write only commands defined in 8.1.

NOTE: The exact operation of each 'Preset VCP Code is defined by the display designer with the exception of VCP 00_h .

Table 10-8: Compliance Procedure for Displays that Support VCP 00_h

Stage #	Action	Result
1	Power ON, exit sleep mode, after HPD or after other reset	Display operational
2	Read and store capability string	If VCP 00 _h is supported skip to stage 4
3	If VCP 00 _h is not supported	Report ERROR and end test
4	Read VCP 00 _h	If value = 00_h skip to stage 6
5	If value $\neq 00_h$	Report ERROR and end test
6	Write declared values to VCP 00_h one by one ending with value = 00_h	IF value \neq value written report ERROR and end test If value = value written = 00_h go to stage 7
7	Repeat all stages for Power OFF/ON, enter/exit sleep mode, trigger and exit a HPD or trigger and exit other reset	If all test initial conditions have been tested report PASS test

Table 10-9: Compliance Procedure for Preset VCP Codes

Stage #	Action	Result
1	Obtain, from the display design specification, the VCP Code(s) that the current Preset VCP Code is intended to affect, and the associated default values.	NA
2	Set all supported VCP Codes to their maximum value	NA
3	Issue the current Preset VCP Code	NA
4	Read the new value of all VCP Codes set to maximum value in stage 2	If the VCP Code(s) intended to be affected by current preset is (are) at default value then, Compliant. If the VCP Code(s) intended to be affected by current preset is (are) at not at default value then, Not Compliant.

Table 10-9: Compliance Procedure for Preset VCP Codes

Stage #	Action	Result
		If the VCP Code(s) not intended to be affected by the current preset VCP Code is (are) not at maximum value the, Not Compliant.

10.9 Compliance Procedures for Auto Set-up and Auto Color Set-up VCP Codes

There are two-auto set-up VCP Codes, $(1E_h, Auto Set-up, and 1F_h, Auto Color Set-up)$ which require a special compliance procedure.

NOTE: There may be an interaction between these tests and VCP Code A2_h, Auto setup On/Off.

Table 10-10: Compliance Procedure for Auto Set-up VCP Codes

Stage #	Action	Result
1	Set display to factory defaults.	NA
2	If VCP code A2 _h (Auto Set-up On/Off) is supported then set it "ON" (write a value of 02 _h).	NA
3	Write a value of 01 _h to VCP code 1E _h	If auto set-up is performed then, Compliant If auto set-up is not performed then, Not Compliant
4	Write a value of 02 _h to VCP Code 1E _h	If auto set-up is performed then, Compliant If auto set-up is not performed then, Not Compliant
5	If display uses a timer, then wait for time period defined by the display specification	If auto set-up is performed after the defined period then, Compliant
	OR	If auto set-up is not performed after the defined
	If display operation is triggered by a mode change then force a mode change	period then, Not Compliant
6	Write a value of 00 _h to VCP Code 1E _h	If auto set-up is performed then, Not Compliant
7	If display uses a timer, then wait for time period defined by the display specification OR If display operation is triggered by a mode change then force a mode change	If auto set-up is performed after the defined period then, Not Compliant
8	Write a value $> 02_h$ to the VCP Code $1E_h$	If auto set-up is performed after the defined period then, Not Compliant
9	Repeat stage 8 with a different value	If auto set-up is performed after the defined period then, Not Compliant
10	Repeat stages $3 \rightarrow 9$ substituting VCP code $1F_h$ for $1E_h$ at each stage.	NA

10.10 Compliance for 6-axis Color Adjustments

The 6-axis color saturation and hue adjustment VCP codes require separate compliance procedure since they allow adjustment about a mid-point.

10.10.1 Compliance for 6-axis Saturation VCP Codes

Table 10-11: Compliance Procedure for 6-axis Color Saturation Adjustment VCP Codes

Stage #	Action	Result
1	Set display to factory defaults.	NA
2	Write a value of 00 _h to the current 6-axis Color Saturation VCP Code	If the current color moves to the minimum supported color saturation then, Compliant.
		If the current color does not move to the minimum supported color saturation then, Not Compliant.
3	Write a value of FF _h to the current 6-axis Color Saturation VCP Code	If the current color moves to the maximum supported color saturation then, Compliant.
		If the current color does not move to the maximum supported color saturation then, Not Compliant.
4	Write a value of 7F _h to the current 6-axis Color Saturation VCP Code	If the current color moves to the default color saturation then, Compliant.
		If the current color does not move to the default color saturation then, Not Compliant.
5	Repeat stages 1 → 5 for other 6-axis Color Saturation VCP Codes	NA

10.10.2 Compliance for 6-axis Hue VCP Codes

Table 10-12: Compliance Procedure for 6-axis Color Hue VCP Codes

Stage #	Action	Result
1	Set display to factory defaults.	NA
2	Write a value of 00 _h to the current 6-axis Color Hue VCP Code	If the current color moves to the minimum supported color hue then, Compliant.
		If the current color does not move to the minimum supported color hue then, Not Compliant.
3	Write a value of FF _h to the current 6-axis Color Saturation VCP Code	If the current color moves to the maximum supported color hue then, Compliant.
		If the current color does not move to the maximum supported color hue then, Not Compliant.
4	Write a value of 7F _h to the current 6-axis Color Saturation VCP Code	If the current color moves to the default color hue then, Compliant.
		If the current color does not move to the default color hue then, Not Compliant.
5	Repeat stages $1 \rightarrow 5$ for other 6-axis Color Hue VCP Codes	NA

10.11 Compliance for Read only VCP Codes

There are a number of read only VCP Codes which require special compliance procedures.

10.11.1 Compliance Procedure for Horizontal and Vertical Frequency VCP Codes

Table 10-13: Compliance Procedure for Horizontal and Vertical Frequency VCP Codes

Stage #	Action	Result
1	Set display timing to a known condition	n/a
2	Read the Horizontal Frequency VCP Code	If the returned Horizontal Frequency matches the display input horizontal frequency to ± 0.5 % then, Compliant.
		If the returned Horizontal Frequency does not match the display input horizontal frequency to \pm 0.5 % then, Not Compliant.
3	Read the Vertical Frequency VCP Code	If the returned Vertical Frequency matches the display input vertical frequency to ± 0.5 Hz then, Compliant.
		If the returned Vertical Frequency does not match the display input vertical frequency to ± 0.5 Hz then, Not Compliant.

10.11.2 Compliance Procedure for Display Usage Time VCP Code

Table 10-14: Compliance Procedure for Display Usage Time VCP Code

Stage #	Action	Result
1	Read the current display usage time at VCP Code C0 _h	NOTE the reported time
2	Leave the display active for a minimum of 2 hours. NOTE: It will be necessary to disable any automatic shut-down timer in the host for this procedure	NA
3	Read the current time at VCP Code C0 _h	If the time reported in stage 1 + delay time is correctly reported in stage 3 then, Compliant If the time reported in stage 1 + delay time is not correctly reported in stage 3 then, Not Compliant

10.11.3 Compliance Procedure for Miscellaneous Read Only VCP Codes

Table 10-15: Compliance Procedure for Other Read only VCP Codes

Stage #	Action	Result
1	Read the current value at the current VCP Code	If reported value matches the display specification then, Compliant.
		If reported value does not match the display specification then, Not Compliant.

10.11.4 Compliance for Write Only VCP Codes

Table 10-16: Compliance Procedure for Write Only VCP Codes

Stage #	Action	Result
1	Write a valid value to the display	If the display reacted appropriately then Compliant If the display did not react appropriately then Not Compliant
2	Write an invalid value to the display	If the display ignored the command then Compliant If the display did not ignore the command then Not Compliant
3	Repeat stage 1 with a different valid value	If the display reacted appropriately then Compliant If the display did not react appropriately then Not Compliant

10.11.5 Compliance Procedure for Degauss VCP Code

Table 10-17: Compliance Procedure for Degauss VCP Codes

Stage #	Action	Result
1	Write a value > 00 _h	If a degauss cycle was performed then, Compliant.
		If a degauss cycle was not performed then, Not Compliant
2	Write a value of 00 _h	If a degauss cycle was performed then, Not Compliant.
		If a degauss cycle was not performed then, Compliant
3	Repeat stage 1 with a different value > 00 _h	If a degauss cycle was performed then, Compliant.
		If a degauss cycle was not performed then, Not Compliant

10.12 Compliance for Table VCP Codes

10.12.1 Compliance Procedure for Input Source and Output Select VCP Codes

NOTE: It is possible that a display will only support Input Source or the Output Select VCP Code; in that case only steps 1 and 2 or 3 and 4 (respectively) of Table 10-18 must be used.

Table 10-18: Compliance Procedure for Input Source and Output Select VCP Codes

Stage #	Action	Result
1	Write the appropriate value to select each supported Input Source	If the correct input was selected then, Compliant If an incorrect input was selected then, Not Compliant
2	Write the appropriate values for Input Sources that are not supported	If there is no change to the previously selected input then, Compliant
		If there is a change to the previously selected input then, Not Compliant

Table 10-18: Compliance Procedure for Input Source and Output Select VCP Codes

Stage #	Action	Result
3	Write the appropriate value to select each supported Output	If the correct output was selected then, Compliant If an incorrect output was selected then, Not Compliant
4	Write the appropriate values for Output that are not supported	If there is no change to the previously selected output then, Compliant If there is a change to the previously selected output then, Not Compliant

10.12.2 Compliance Procedure for Source Timing Mode VCP Codes

Table 10-19: Compliance Procedure for Source Timing Mode VCP Code

Stage #	Action	Result
1	Determine the VESA DMT and DTV timing modes supported by the display.	n/a
2	Select 3 supported timing modes from the VESA DMT and DTV lists.	n/a
	If possible, these must each have different pixel formats and refresh rates.	
3	Write the appropriate value for the first timing mode	n/a
4	Read the current value of timing mode stored by the display	If the value read matches the value written then, Compliant
		If the value read does not match the value written then, Not Compliant
5	Repeat stages 3 & 4 for other timing modes selected in stage 2	n/a

10.12.3 Compliance Procedure for EDID Operation

Table 10-20: Compliance Procedure for EDID Operation VCP Code

Stage #	Action	Result
1	Determine the full EDID structure – base EDID and any extension blocks – that are part of the display design. Determine the intended content of base EDID	NA
	and any EDID extensions that are present.	
2	Read base EDID	If the received contents match the design contents determined in step 1 then, Compliant
		If the received contents do not match the design contents determined in step 1 then, Not Compliant
3	Read first EDID extension	If the received contents match the design contents determined in step 1 then, Compliant
		If the received contents do not match the design contents determined in step 1 then, Not Compliant

Table 10-20: Compliance Procedure for EDID Operation VCP Code

Stage #	Action	Result
4	Repeat stage 3 as required for all further EDID extensions	If the received contents match the design contents determined in step 1 then, Compliant
		If the received contents do not match the design contents determined in step 1 then, Not Compliant

10.12.4

Compliance Procedure for Auxiliary Display Data VCP Code

Table 10-21: Compliance Procedure for Auxiliary Display Data VCP Code

Stage #	Action	Result
1	Determine the design size of the auxiliary display.	NA
2	Write an ASCII string of the appropriate length to fill the auxiliary display.	If the data send is correctly displayed then, Compliant
	NOTE: String content must be non-repetitive.	If the data send is not correctly displayed then, Not Compliant
3	Write an ASCII string of the appropriate length to fill the auxiliary display + 2 bytes.	If the latest data sent that corresponds to the display length is correctly displayed then, Compliant
	NOTE: String content must be non-repetitive and different from data in stage 2	If the latest data sent that corresponds to the display length is not correctly displayed then, Not Compliant

10.12.5 Compliance Procedure for Transmit Display Descriptor VCP Code

Table 10-22: Compliance Procedure for Transmit Display Descriptor VCP Code

Stage #	Action	Result
1	Determine the design length of the display descriptor storage.	NA
2	Write an ASCII string of the appropriate length to fill the display descriptor storage. NOTE: String content must be non-repetitive.	NA
3	Read the Display Descriptor VCP Code	If the data read matches the data written in stage 2 then, Compliant
		If the data read does not match the data written in stage 2 then, Not Compliant.
4	Write an ASCII string of the appropriate length to fill the display descriptor storage + 2 bytes	NA
	NOTE: String content must be non-repetitive and different from data in stage 2	

Table 10-22: Compliance Procedure for Transmit Display Descriptor VCP Code

Stage #	Action	Result
5	Read the Display Descriptor VCP Code	If the data read matches the data written in stage 4 without the last 2 bytes then, Compliant If the data read does not match the data written in stage 4 without the last 2 bytes then, Not Compliant

10.12.6 Compliance Procedure for Asset Tag VCP Code

Table 10-23: Compliance Procedure for Asset Tag VCP Code

Stage #	Action	Result
1	Determine the appropriate key.	NA
2	Read the asset tag	If key is not present in bytes 0 and 1 then, Compliant If key is present in bytes 0 and 1 then, Not Compliant
3	Write the key and a test pattern that must completely fill the asset tag. Data should be non-repetitive.	NA
4	Read the asset tag	If key is not present in bytes 0 and 1 then, Compliant If key is present in bytes 0 and 1 then, Not Compliant If the asset tag data matches the data written in stage 3 then, Compliant
		If the asset tag data does not match the data written in stage 3 then, Not Compliant

10.12.7 Compliance Procedure for LUT Size VCP Code

Table 10-24: Compliance Procedure for LUT Size VCP Code

Stage #	Action	Result
1	Determine the display LUT size (number of entries and bits / entry) from the design specification.	NA
2	Read the LUT Size	If the reported values for Red, Green and Blue LUTS match the design specification then, Compliant. If the reported values for Red, Green and Blue LUTS do not match the design specification then, Not Compliant.

10.12.8 Compliance Procedure for Single Point LUT Operation VCP Code

Table 10-25: Compliance Procedure for Single Point LUT VCP Code

Stage #	Action	Result
1	Verify that display reports support for the LUT Size VCP Code (73 _h)	If display report supports for LUT Size VCP Code then, Compliant.
		If display does not report support for LUT Size VCP Code then, Not Compliant.

Table 10-25: Compliance Procedure for Single Point LUT VCP Code

Stage #	Action	Result
2	Read the current contents of selected Red, Green, and Blue LUT entries (2 for each LUT).	NA
	NOTE : LUT entries must be at different offsets	
3	Write a new Red LUT value to the first selected location. NOTE: Data must be chosen to be significantly	If a display change is visible then, Compliant. If a display change is not visible then, Not Compliant
	different to data read from selected location in stage 2	
4	Repeat stage 3 for a second Red LUT entry and for each Green and Blue LUT entries.	NA
	NOTE: Data values writer to each LUT entry must be different	
5	Read the current contents selected Red, Green, and Blue LUT entries.	NA
6	Compare the data read at stage 5 with that at stage 2	If data read at stage 5 matches the data read at stage 2 then, Compliant
		If data read at stage 5 does not match the data read at stage 2 then, Not Compliant

10.12.9 Compliance Procedure for Block LUT Operation VCP

Table 10-26: Compliance Procedure for Block LUT VCP Code

Stage #	Action	Result
1	Verify that display reports support for the LUT Size VCP Code (73 _h)	If display report supports for LUT Size VCP Code then, Compliant.
		If display does not report support for LUT Size VCP Code then, Not Compliant.
2	Read the current values of the Red, Green and Blue LUT entries	NA
3	Write a new set of data to the Red LUT	If a display change is visible then, Compliant.
	NOTE: Data must be chosen to be significantly different to data read from in stage 2	If a display change is not visible then, Not Compliant
4	Repeat stage 3 for the Green and Blue LUTs.	NA
	NOTE: All LUTs must be written with different data.	
5	Read the current values of the Red, Green and Blue LUT entries	NA
6	Compare the data read at stage 5 with that at stage 2	If data read at stage 6 is different to data read at stage 2 then, Compliant
		If data read at stage 6 is not different to data read at stage 2 then, Not Compliant
		If data read at stage 6 matches the data written at stages 3 and 4 then, Compliant
		If data read at stage 6 does not match the data written at stages 3 and 4 then, Not Compliant.

10.12.10 Compliance Procedure for Code Remote Procedure Call VCP Code

Table 10-27: Compliance Procedure for Remote Procedure Call VCP Code

Stage #	Action	Result						
1	Determine the current contents of the Red, green and Blue LUTs.	NA						
2	Select six LUT offset locations to be used to generate a new set of LUT data.	NA						
	The data selected for these six locations must be significantly different to the values determined in step 1							
3	Write the data from stage 2 along with a value of 01 _h in byte 0	If the display characteristic change appropriately for the data then, Compliant.						
		If the display characteristic do not change appropriately for the data then, Not Compliant.						
4	Write a new set of data, selected to be significantly different from that used in stage 2,	If the display characteristic do not change then, Compliant.						
	with a value > 01 _h	If the display characteristic change then, Not Compliant.						
5	Repeat stage 4 but with byte 0 set to a value of 01 _h	If the display characteristic change appropriately for the data then, Compliant.						
		If the display characteristic do not change appropriately for the data then, Not Compliant.						

10.12.11 Compliance procedure for TV-channel Up/Down VCP Code

Table 10-28: Compliance Procedure for TV-channel Up/Down VCP Code

Stage #	Action	Result
1	Determine initial channel number	NA
2	Write a value of 01 _h	If channel number was incremented by 1 then, Compliant.
		If channel number was not incremented by 1 then, Not Compliant.
3	Repeat stage 2 twice more	If channel number was incremented by 1 each time then, Compliant.
		If channel number was not incremented by 1 each time then, Not Compliant.
4	Write a value of 02 _h , three times	If channel number is equal to initial channel number determined in step 1 then, Compliant
		If channel number is not equal to initial channel number determined in step 1 then, Not Compliant

10.12.12 Compliance Procedure for Auto Set-up On/Off VCP Code

Table 10-29: Compliance Procedure for Auto Setup On/Off VCP Code

Stage #	Action	Result
1	Write a value of 02 _h (auto setup on)	n/a
2	Write a value of 01 _h to 1E _h , Auto Set-up, VCP Code	If Auto Set-up is performed then, Compliant If Auto Set-up is not performed then, Not Compliant
3	Write a value of 01 _h (auto setup off)	n/a
4	Write a value of 01 _h to 1E _h , Auto Set-up, VCP Code	If Auto Set-up is performed then, Not Compliant If Auto Set-up is not performed then, Compliant

10.12.13 Compliance Procedure for Window Size, VCP Code

Table 10-30: Compliance Procedure for Window Size, VCP Code

Stage #	Action	Result
1	Obtain the Window characteristic(s) from the capability string to determine the minimum/maximum size of the Window and whether it's characterized as a Zone or PIP Window.	NA
2	Use GETVCP command to obtain the maximum value supported value.	NA
3	Set the display to factory default condition	NA
4	Initialize the Window. Refer to VCP codes A4 _h and A5 _h to initialize the Window.	NA
5	Use SetVCP to write a value of 00_h to $A6_h$	Ensure that the window is set to the minimum size as defined in the capability string
6	Use SetVCP to increment the adjustment value of the current VCP Code to 1.	Ensure that the size of the window has increased.
7	Repeat stage 6 until VCP Code is at a maximum value	Ensure that the window is set to the maximum size as defined in the capability string
8	Determine whether display is Compliant of Not Compliant	If stages 5 → 7 produce a smooth transition of the window size while maintaining the aspect ratio (i.e. 4:3, 16:9, 16:10) from the minimum to the maximum condition then Compliant. If stages 5 → 7 do not produce a smooth transition of the window size while maintaining the aspect ratio (i.e. 4:3, 16:9, 16:10) from the minimum to the maximum condition then Not Compliant.

11 VCP Code Index

NOTE:

- All unassigned codes are reserved for future use. To ensure predictable operation and interoperability any required control functions not assigned a specific VCP code must be implemented using a manufacturer's specific VCP code in range of E0_h to FF_h.
- In the event of a conflict between these index tables and the VCP Code tables in section 8, the VCP codes defined in section 8 must be deemed to be correct.

Table 11-1: VCP Code Numeric Index

Code	VCP Code Name	Preset	Table 8-2	Image	Table 8-4	Control	Table 8-8	Geometry	Table 8-11	Misc.	Table 8-13	Audio	Table 8-15	DPVL	Table 8-17	Manuf.	Table 8-18
$00_{\rm h}$	VCP Code Page	١	/														
01_h	Degauss									١	/						
02 _h	New Control Value									١	/						
03_h	Soft Controls									١	/						
04 _h	Restore Factory Defaults	١	/														
05 _h	Restore Factory Luminance/ Contrast Defaults	١	/														
06_{h}	Restore Factory Geometry Defaults	١	/														
07 _h																	
08_{h}	Restore Factory Color Defaults	١	/														
09 _h																	
$0A_h$	Restore Factory TV Defaults	١	/														
$0B_h$	Color Temperature Increment			٧	1												
$0C_h$	Color Temperature Request			٧	r												
$0D_h$																	
$0E_h$	Clock			٧	r												
$0F_h$																	
$10_{\rm h}$	Luminance			٧	′												
11 _h	Flesh Tone Enhancement			٧	r												
12 _h	Contrast			٧	r												
13 _h	Backlight Control			٧	1												
14 _h	Select Color Preset			٧	r												
15 _h																	
16 _h	Video Gain (Drive): Red			٧	r												
17 _h	User Color Vision Compensation			٧	1												
18 _h	Video Gain (Drive): Green			٧	r												
19 _h																	
$1A_h$	Video Gain (Drive): Blue			٧	r												
$1B_h$																	
1C _h	Focus			٧	r												
$1D_h$																	

Table 11-1: VCP Code Numeric Index

	Table 11-1; VCI Code Numeric index																
Code	VCP Code Name	Preset	Table 8-2	Image	Table 8-4	Control	Table 8-8	Geometry	Table 8-11	Misc.	Table 8-13	Audio	Table 8-15	DPVL	Table 8-17	Manuf.	Table 8-18
1E _h	Auto Setup			٧	/												
1F _h	Auto Color Setup			٧													
20 _h	Horizontal Position (Phase)							٧	/								
21 _h	, ,																
22 _h	Horizontal Size							٧	/								
23 _h																	
24 _h	Horizontal Pincushion							٧	/								
25 _h																	
26 _h	Horizontal Pincushion Balance							٧	/								
27 _h																	
28 _h	Horizontal Convergence R / B							٧	/								
29 _h	Horizontal Convergence M / G							٧	/								
$2A_h$	Horizontal Linearity							٧	/								
$2B_h$																	
$2C_h$	Horizontal Linearity Balance							٧	/								
$2D_h$																	
2E _h	Gray Scale Expansion			٧	/												
2F _h																	
30_h	Vertical Position (Phase)							٧	/								
31 _h																	
32 _h	Vertical Size							٧	/								
33 _h																	
34 _h	Vertical Pincushion							٧	/								
35 _h																	
36 _h	Vertical Pincushion Balance							٧	/								
37 _h																	
38 _h	Vertical Convergence R/B							٧									
39 _h	Vertical Convergence M/G							٧									
3A _h	Vertical Linearity							٧	/								
$3B_h$																	
3C _h	Vertical Linearity Balance							٧	/								
$3D_h$,												
3E _h	Clock Phase			٧	/												
3F _h																	
40 _h	Horizontal Parallelogram							٧									
41 _h	Vertical Parallelogram							٧									
42 _h	Horizontal Keystone	1						٧									
43 _h	Vertical Keystone							٧									
44 _h	Rotation							٧	<i>(</i>								

Table 11-1: VCP Code Numeric Index

	Table 11-1 . VC																
Code	VCP Code Name	Preset	Table 8-2	Image	Table 8-4	Control	Table 8-8	Geometry	Table 8-11	Misc.	Table 8-13	Audio	Table 8-15	DPVL	Table 8-17	Manuf.	Table 8-18
45 _h																	
46 _h	Top Corner Flare							١	/								
47 _h																	
48 _h	Top Corner Hook							١	/								
49 _h	•																
4A _h	Bottom Corner Flare							١	/								
4B _h																	
4C _h	Bottom Corner Hook							١	/								
4D _h																	
4E _h																	
4F _h																	
50 _h																	
51 _h																	
52 _h	Active Control									١	/						
53 _h																	
54 _h	Performance Preservation									١	/						
55 _h																	
56 _h	H Moiré			٧	/												
57 _h																	
58 _h	V Moiré			٧	/												
59 _h	6 Axis Saturation Control: Red			٧	/												
5A _h	6 Axis Saturation Control: Yellow			٧	/												
5B _h	6 Axis Saturation Control: Green			٧	/												
5C _h	6 Axis Saturation Control: Cyan			٧	/												
$5D_h$	6 Axis Saturation Control: Blue			٧	/												
5E _h	6 Axis Saturation Control: Magenta			٧	/												
5F _h																	
$60_{\rm h}$	Input Select									١	/						
61 _h																	
62 _h	Audio: Speaker Volume											١	/				
63 _h	Audio: Speaker Pair Select											١	/				
64 _h	Audio: Microphone Volume											١	/				
65 _h	Audio: Jack Connection Status											١	/				
66 _h	Ambient Light Sensor									١	/						
67 _h																	
68 _h																	
69 _h																	
6A _h																	
$6B_h$	Backlight Level: White			٧	/												

Table 11-1: VCP Code Numeric Index

	Table 11-1 : VC		out	114	1110	110		UA									
Code	VCP Code Name	Preset	Table 8-2	Image	Table 8-4	Control	Table 8-8	Geometry	Table 8-11	Misc.	Table 8-13	Audio	Table 8-15	TAda	Table 8-17	Manuf.	Table 8-18
6C _h	Video Black Level: Red			٧	/												
6D _h	Backlight Level: Red			٧	/												
6E _h	Video Black Level: Green			٧	/												
6F _h	Backlight Level: Green			٧	/												
70 _h	Video Black Level: Blue			٧	/												
71 _h	Backlight Level: Blue			٧	/												
72 _h	Gamma			٧	/												
73 _h	LUT Size			٧	/												
74 _h	Single Point LUT Operation			٧	/												
75 _h	Block LUT Operation			٧	/												
76 _h	Remote Procedure Call									١	/						
77 _h																	
78 _h	Display Identification Data Operation									١	/						
79 _h																	
7A _h																	
$7\mathrm{B}_{\mathrm{h}}$																	
7C _h	Adjust Zoom			٧	/												
$7D_h$																	
7E _h																	
7F _h																	
80 _h																	
81 _h																	
82 _h	Horizontal Mirror (Flip)							√	<i>'</i>								
83 _h																	
84 _h	Vertical Mirror (Flip)							√	/								
85 _h									,								
86 _h	Display Scaling				,			٧									
87 _h	Sharpness			٧													
88 _h	Velocity Scan Modulation			٧													
89 _h					,												
8A _h	Color Saturation			٧	'						,						
8B _h	TV Channel Up / Down				,					١	/						
8C _h	TV Sharpness			٧									,				
$8D_h$	Audio Mute / Screen Blank				,							١	/				
8E _h	TV Contrast			٧	′								,				
8F _h	Audio Treble				,							١	/				
90 _h	Hue			٧	/								,				
91 _h	Audio Bass											١	/				

Table 11-1: VCP Code Numeric Index

	Table 11-1: VC		Juc	. 1 1 11	ШС	110	mu	UA.									
Code	VCP Code Name	Preset	Table 8-2	Image	Table 8-4	Control	Table 8-8	Geometry	Table 8-11	Misc.	Table 8-13	OibuA	Table 8-15	TAda	Table 8-17	Manuf.	Table 8-18
92 _h	TV Black Level / Luminance			٧	1												
93 _h	Audio Balance L / R											١	/				
94 _h	Audio Processor Mode:											١	/				
95 _h	Window Position (TL_X)							٧	/								
96 _h	Window Position (TL_Y)							٧	<i>(</i>								
97 _h	Window Position (BR_X)							٧	<i>(</i>								
98 _h	Window Position (BR_X)							٧	<i>r</i>								
99 _h																	
9A _h	Window Background			٧	,												
9B _h	6 Axis Color Control: Red			٧	1												
9C _h	6 Axis Color Control: Yellow			٧	ſ												
9D _h	6 Axis Color Control: Green			٧	ſ												
9E _h	6 Axis Color Control: Cyan			٧	ſ												
9F _h	6 Axis Color Control: Blue			٧	ſ												
$A0_{\rm h}$	6 Axis Color Control: Magenta			٧	ſ												
A1 _h																	
A2 _h	Auto Setup On / Off			٧	1												
A3 _h																	
A4 _h	Window Mask Control			٧	1												
A5 _h	Window Select			٧	r												
$A6_h$	Window Size			٧	1												
A7 _h	Window Transparency			٧	1												
$A8_h$																	
$A9_h$																	
AA_h	Screen Orientation			٧	′												
AB_h																	
AC_h	Horizontal Frequency					٧	/										
AD_h																	
AE_h	Vertical Frequency					٧	/										
AF_h																	
$\mathrm{B0}_{\mathrm{h}}$	Settings	V	,														
B1 _h																	
B2 _h	Flat Panel Sub-Pixel Layout									٧	/						
B3 _h																	
B4 _h	Source Timing Mode					٧											
B5 _h	Source Color Coding					٧	/										
B6 _h	Display Technology Type									ν	/						
B7 _h	DPVL : Display status													ν	/		

Table 11-1: VCP Code Numeric Index

Preset Table 8-2 Image Control Table 8-8 Geometry Table 8-11 Misc.	8-13 lio	15	7		
	Table Aud	Table 8-15	DPVL Table 8-1	Manuf.	Table 8-18
B8 _h DPVL : Packet count			$\sqrt{}$		
B9 _h DPVL : Display X origin			$\sqrt{}$		
BA _h DPVL : Display Y origin			$\sqrt{}$		
BB _h DPVL : Header CRC error count			$\sqrt{}$		
BC _h DPVL : Body CRC error count			$\sqrt{}$		
BD _h DPVL : Client ID			$\sqrt{}$		
BE _h DPVL : Link control			$\sqrt{}$		
BF_h					
C0 _h Display Usage Time √					
C1 _h					
C2 _h Display Descriptor Length	$\sqrt{}$				
C3 _h Transmit Display Descriptor	$\sqrt{}$				
C4 _h Enable Display of 'Display Descriptor'	\checkmark				
C5 _h					
C6 _h Application Enable Key	$\sqrt{}$				
C7 _h Reserved					
C8 _h Display Controller ID √					
C9 _h Display Firmware Level √					
CA_h OSD \checkmark					
CB_h					
CC _h OSD Language √					
CD _h Status Indicators	V				
CE _h Auxiliary Display Size	V				
CF _h Auxiliary Display Data	V				
D0 _h Output Selection	$\sqrt{}$				
D1 _h					
D2 _h Asset Tag	V				
D3 _h					
D4 _h Stereo Video Mode √					
D5 _h					
$D6_h$ Power Mode $\sqrt{}$					
D7 _h Auxiliary Power Output	V				
D8 _h					
D9 _h					
DA _h Scan Mode √					
DB_h Image Mode $\sqrt{}$					
DC _h Display Application √					
$ DD_h $					

Table 11-1: VCP Code Numeric Index

	Table 11-1; vC		out	110		110	III	UA.									
Code	VCP Code Name	Preset	Table 8-2	Image	Table 8-4	Control	Table 8-8	Geometry	Table 8-11	Misc.	Table 8-13	Audio	Table 8-15	DPVL	Table 8-17	Manuf.	Table 8-18
DE_h	Scratch Pad									١	/						
DF_{h}	VCP Version					٧	/										
$E0_h$	Manufacturer Specific															١	\checkmark
E1 _h	Manufacturer Specific															١	\checkmark
E2 _h	Manufacturer Specific															١	\checkmark
E3 _h	Manufacturer Specific															١	\checkmark
E4 _h	Manufacturer Specific															١	\checkmark
E5 _h	Manufacturer Specific															١	\checkmark
E6 _h	Manufacturer Specific															١	\checkmark
E7 _h	Manufacturer Specific															١	\checkmark
E8 _h	Manufacturer Specific															١	\checkmark
E9 _h	Manufacturer Specific															١	\checkmark
EA_h	Manufacturer Specific															١	\checkmark
EB_h	Manufacturer Specific															١	\checkmark
EC_h	Manufacturer Specific															١	\checkmark
ED_{h}	Manufacturer Specific															١	\checkmark
EE_h	Manufacturer Specific															١	\checkmark
EF_{h}	Manufacturer Specific															١	\checkmark
$F0_h$	Manufacturer Specific															١	\checkmark
F1 _h	Manufacturer Specific															١	\checkmark
F2 _h	Manufacturer Specific															١	\checkmark
F3 _h	Manufacturer Specific															١	\checkmark
F4 _h	Manufacturer Specific															١	\checkmark
F5 _h	Manufacturer Specific															١	\checkmark
F6 _h	Manufacturer Specific															١	\checkmark
F7 _h	Manufacturer Specific															١	\checkmark
F8 _h	Manufacturer Specific															١	\checkmark
F9 _h	Manufacturer Specific															١	\checkmark
FA_h	Manufacturer Specific															١	\checkmark
FB_h	Manufacturer Specific															١	\checkmark
FC _h	Manufacturer Specific															١	\checkmark
FD_h	Manufacturer Specific															١	\checkmark
FE _h	Manufacturer Specific															١	\checkmark
FF_h	Manufacturer Specific															١	\checkmark

Appendix A: Drawings of Display Geometry

The drawings in this section are for information only and intended to aid in the interpretation of the function of VCP codes in section 8.4.

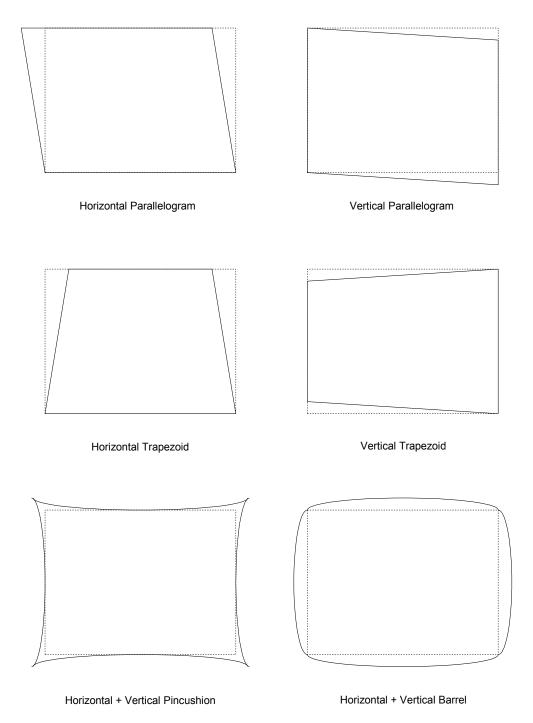


Figure A-1: Parallelogram, Trapezoid, Pincushion, and Barrel Distortion

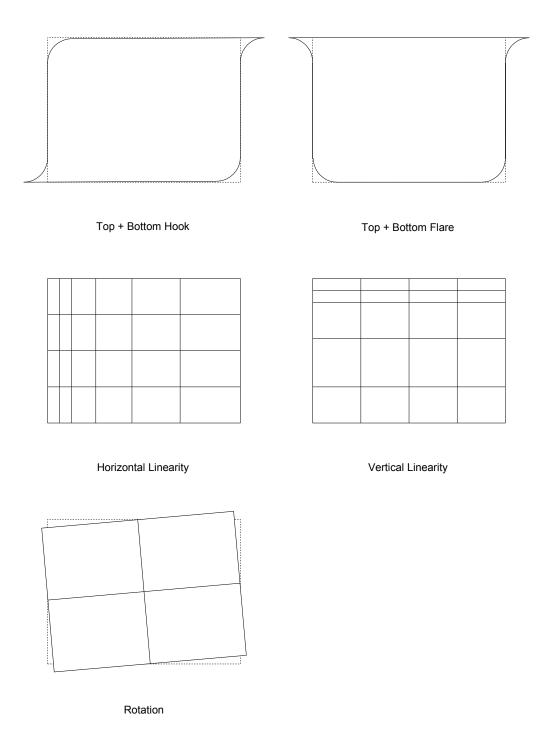
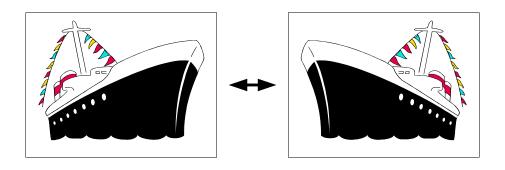
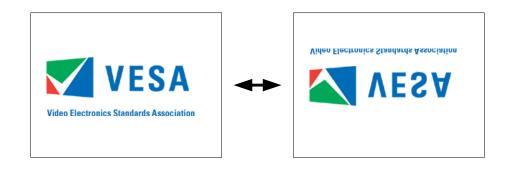




Figure A-2: Hook, Flare, Linearity, and Rotation Distortion

Horizontal Mirror (Flip)

Vertical Mirror (Flip)

Figure A-3: Mirroring / Flip

Appendix B: Implementation Guidance

This section is for information only and is not part of the MCCS standard.

B.1 Support for Multiple Window Operation.

NOTE: The range of commands available to operate on a window may be different (usually a sub-set) from those available for full screen operation.

B.1.1 Window Position VCP Codes $(95_h \rightarrow 98_h)$

It is important to recognize that the defined X and Y coordinates apply before any scaling that takes place in the display ... the display must make appropriate adjustments if scaling is active.

B.1.2 Window Mask Control VCP Code (A4h)

This control has two functions:

It allows the effects of changes to be masked until all values have been updated. This permits intermediate effects on the image, which may result in objectionable effects to be selected. It also allows for each window to be set active or inactive

B.1.3 Window Select VCP Code (A5_h)

This control allows up to seven windows plus the background (full image area) to be selected.

If the selected window is not masked 'off' by the appropriate bit in Window Control (VCP code A4_h), then changes will have immediate effect.

B.1.4 Picture in Picture (PIP)

A PIP size and location may be defined using window commands and the appropriate input signal selected for the signal that is required to be inserted here. For example:

```
Set A4_h \Rightarrow 00_h Mask all windows

Set A5_h \Rightarrow 01_h Select window 1

Set 95_h \Rightarrow 00_h Top left X value = 0

Set 96_h \Rightarrow 00_h Top left Y value = 0

Set 97_h \Rightarrow 03_h, 20_h Bottom right X value = 800

Set 98_h \Rightarrow 01_h, C2_h Bottom right Y value = 450

Set 60_h \Rightarrow 07_h Select S-video # 1 as input source

Set A4_h \Rightarrow C0_h Unmask the background and window # 1
```

This will result in a PIP window at the top left of the image with 800 x 450 pixels.

NOTE: The display must scale the PIP input signal to match the defined window.

B.2 Keeping Local and Remote Operations in Synchronization

Reference the discussion in Section 2.

This section outlines a recommended implementation and the following logical flow chart shows the operation of the host and display and how these interact.

If several control values have been changed then display must implement a 'FIFO (First In, First Out)' with the VCP codes of all changed controls and with the last entry set to 00_h . The host must perform successive reads until it receives a value of 00_h , it will then reset the New Control Value to 01_h .

NOTE:

- The display should ensure that only a single instance of a particular VCP code is placed on the 'FIFO'. In particular, if the same VCP code is used several times to make an adjustment, this should not result in multiple instance of that VCP code on the 'FIFO'. (i.e. several adjustments of the same feature before the software application has read the 'FIFO' should not result in multiple instances of the associated VCP code)
- The software application should read entries on the 'stack' using VCP code 52_h , a value of 00_h indicates that there are no more entries on the 'FIFO'. The application should reset the 'New Control value' to 01_h .

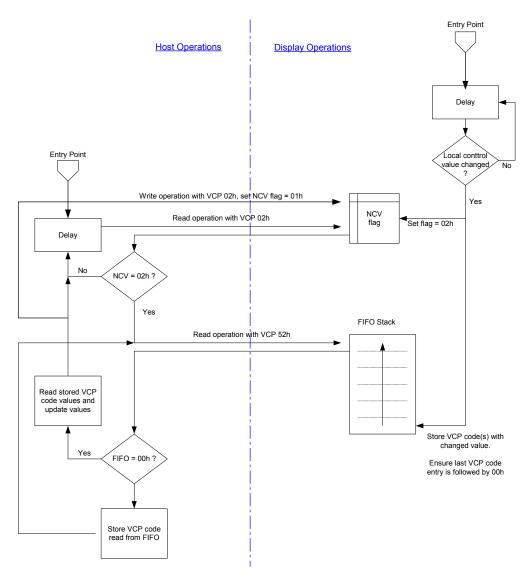


Figure B-1: Local and Remote Synchronization

Appendix C: Main Contributor History (Previous Versions)

Table C-1: Main Contributors to Version 2.2

Name	Company	Contribution
Mike Maciesowicz	Apple	
Colin Whitby-Strevens	Apple	
Syed A. Hussain	AMD	
Ashley Saldanha	EnTech Taiwan	
Bryan Speece	EnTech Taiwan	
Jim Webb	Luxtera	Task Group Chair & Editor
Randy Irvine	Portrait Displays	
Scott Anderson	Portrait Displays	
Alain d'Hautecourt	ViewSonic	

Table C-2: Main Contributors to Version 3.0

Name	Company	Contribution
Jim Webb	Display Laboratories	
Ashley Saldanha	EnTech Taiwan	
Bryan Speece	EnTech Taiwan	Task Group Secretary
Bob Myers	Hewlett-Packard	
Jeff Frankel	Genesis Microchip	
Mike Anderson	Portrait Displays	
Scott Anderson	Portrait Displays	
Bob McQuillan	Portrait Displays	
Ian Miller	Samsung Information Systems America	Task Group Chair & Editor
Alain d'Hautecourt	ViewSonic	

Table C-3: Main Contributors to Version 2.1

Name	Company	Contribution
Bryan Speece	Entech Taiwan	
John Frederick	Hewlett-Packard	
Eric Wogsberg	Jupiter Systems	
Glen Adler	Philips	
Mike Anderson	Portrait Displays	
Scott Anderson	Portrait Displays	
Ian Miller	Samsung Information Systems America	Task Group Chair & Editor
Paul Doyle	Sony	
Jim Webb	Tech Source	
Alain d'Hautecourt	ViewSonic	Task Group Vice-chair & Secretary

VESA MCCS Standard

Table C-4: Main Contributors to Version 2

Name	Company	Contribution
Don Chambers	Cables-to-Go	
Tamuka Ishida	EIZO NANAO	
Yuichiro Wada	Fujitsu	
John Frederick	Hewlett-Packard	
Bob Myers	Hewlett-Packard	
Youichi Igarashi	Hitachi	
Kai Schleupen	IBM	
Hiroshi Yamashita	International Display Technology	
Hironobu Yasui	Mitsubishi Electric Corp.	
Jack Hosek	NEC-Mitsubishi.	
Kazuaki Takamoto	NEC Mitsubishi Electric Visual Systems	
Hideki Tanizoe	NEC Mitsubishi Electric Visual Systems	
Yoshihisa Kudou	NEC Viewtechnology	
Seiji Kobayashi	Plus Vision	
George Wiley	Qualcomm	
Bryan Speece	Portrait Displays	
Ian Miller	Samsung Information Systems America	Workgroup leader
Steve Hasegawa	Sony Electronics	
Doug Gorny	Three-Five Systems	
Alain d'Hautecourt	ViewSonic	